Table of Contents Previous page Next page Index

ModelSim

Model Technology Inc.


mti_GetSignalValue()

Gets the value of a scalar VHDL signal of type enumeration, integer, or physical.

Syntax

value = mti_GetSignalValue( signal_id ) 

Returns

Name
Type
Description
value
mtiInt32T
The current value of the specified signal

Arguments

Name
Type
Description
signal_id
mtiSignalIdT
A handle to a VHDL scalar signal of type enumeration, integer, or physical

Description

mti_GetSignalValue() returns the value of signals of type enumeration, integer, and physical. For composite, real, and time type signals, use mti_GetSignalValueIndirect().

Related functions

mti_GetArraySignalValue()

mti_GetSignalValueIndirect()

Example

FLI code

#include <mti.h>

typedef struct signalInfoT_tag {
  struct signalInfoT_tag * next;
  char                   * name;
  mtiSignalIdT             sigid;
  mtiTypeIdT               typeid;
} signalInfoT;

typedef struct {
  signalInfoT   * sig_info;     /* List of signals. */
  mtiProcessIdT   proc;         /* Test process id. */
} instanceInfoT;

static void printValue( mtiSignalIdT sigid, mtiTypeIdT sigtype, int indent )
{
  switch ( mti_GetTypeKind(sigtype) ) {
    case MTI_TYPE_ENUM:
      {
        char **   enum_values;
        mtiInt32T scalar_val;
        scalar_val  = mti_GetSignalValue( sigid );
        enum_values = mti_GetEnumValues( sigtype );
        mti_PrintFormatted( "  %s\n", enum_values[scalar_val] );
      }
      break;
    case MTI_TYPE_PHYSICAL:
    case MTI_TYPE_SCALAR:
      {
        mtiInt32T scalar_val;
        scalar_val = mti_GetSignalValue( sigid );
        mti_PrintFormatted( "  %d\n", scalar_val );
      }
      break;
    case MTI_TYPE_ARRAY:
      {
        int            i;
        mtiInt32T      num_elems;
        mtiTypeIdT     elem_type;
        mtiTypeKindT   elem_typekind;
        void         * array_val;

        array_val = mti_GetArraySignalValue( sigid, 0 );
        num_elems = mti_TickLength( sigtype );
        elem_type = mti_GetArrayElementType( sigtype );
        elem_typekind = mti_GetTypeKind( elem_type );
        switch ( elem_typekind ) {
          case MTI_TYPE_ENUM:
            {
              char ** enum_values;
              enum_values = mti_GetEnumValues( elem_type );
              if ( mti_TickLength( elem_type ) > 256 ) {
                mtiInt32T * val = array_val;
                for ( i = 0; i < num_elems; i++ ) {
                  mti_PrintFormatted( "  %s", enum_values[val[i]] );
                }
              } else {
                char * val = array_val;
                for ( i = 0; i < num_elems; i++ ) {
                  mti_PrintFormatted( "  %s", enum_values[val[i]] );
                }
              }
            }
            break;
          case MTI_TYPE_PHYSICAL:
          case MTI_TYPE_SCALAR:
            {
              mtiInt32T * val = array_val;
              for ( i = 0; i < num_elems; i++ ) {
                mti_PrintFormatted( "  %d", val[i] );
              }
            }
            break;
          case MTI_TYPE_ARRAY:
            mti_PrintMessage( "  ARRAY" );
            break;
          case MTI_TYPE_RECORD:
            mti_PrintMessage( "  RECORD" );
            break;
          case MTI_TYPE_REAL:
            {
              double * val = array_val;
              for ( i = 0; i < num_elems; i++ ) {
                mti_PrintFormatted( "  %g", val[i] );
              }
            }
            break;
          case MTI_TYPE_TIME:
            {
              mtiTime64T * val = array_val;
              for ( i = 0; i < num_elems; i++ ) {
                mti_PrintFormatted( "  [%d,%d]",
                                   MTI_TIME64_HI32(val[i]),
                                   MTI_TIME64_LO32(val[i]) );
              }
            }
            break;
          default:
            break;
        }
        mti_PrintFormatted( "\n" );
        mti_VsimFree( array_val );
      }
      break;
    case MTI_TYPE_RECORD:
      {
        int            i;
        mtiSignalIdT * elem_list;
        mtiInt32T      num_elems;
        elem_list = mti_GetSignalSubelements( sigid, 0 );
        num_elems = mti_GetNumRecordElements( sigtype );
        mti_PrintFormatted( "\n" );
        for ( i = 0; i < num_elems; i++ ) {
          mti_PrintFormatted( "%*c", indent, ' ' );
          printValue( elem_list[i], mti_GetSignalType(elem_list[i]),
                     indent+2 );
        }
        mti_VsimFree( elem_list );
      }
      break;
    case MTI_TYPE_REAL:
      {
        double real_val;
        mti_GetSignalValueIndirect( sigid, &real_val );
        mti_PrintFormatted( "  %g\n", real_val );
      }
      break;
    case MTI_TYPE_TIME:
      {
        mtiTime64T time_val;
        mti_GetSignalValueIndirect( sigid, &time_val );
        mti_PrintFormatted( "  [%d,%d]\n",
                           MTI_TIME64_HI32(time_val),
                           MTI_TIME64_LO32(time_val) );
      }
      break;
    default:
      mti_PrintMessage( "\n" );
      break;
  }
}

static void checkValues( void *inst_info )
{
  instanceInfoT *inst_data = (instanceInfoT *)inst_info;
  signalInfoT   *siginfo;

  mti_PrintFormatted( "Time [%d,%d]:\n", mti_NowUpper(), mti_Now() );

  for ( siginfo = inst_data->sig_info; siginfo; siginfo = siginfo->next ) {
    mti_PrintFormatted( "  Signal %s:", siginfo->name );
    printValue( siginfo->sigid, siginfo->typeid, 4 );
  }

  mti_ScheduleWakeup( inst_data->proc, 5 );
}

static signalInfoT * setupSignal( mtiSignalIdT sigid )
{
  signalInfoT * siginfo;

  siginfo          = (signalInfoT *) mti_Malloc( sizeof(signalInfoT) );
  siginfo->sigid   = sigid;
  siginfo->name    = mti_GetSignalNameIndirect( sigid, 0, 0 );
  siginfo->typeid  = mti_GetSignalType( sigid );
  siginfo->next    = 0;

  return( siginfo );
}

static void initInstance( void )
{
  instanceInfoT * inst_data;
  mtiSignalIdT    sigid;
  signalInfoT   * curr_info;
  signalInfoT   * siginfo;

  inst_data           = mti_Malloc( sizeof(instanceInfoT) );
  inst_data->sig_info = 0;

  for ( sigid = mti_FirstSignal( mti_GetTopRegion() );
        sigid; sigid = mti_NextSignal() ) {
    siginfo = setupSignal( sigid );
    if ( inst_data->sig_info == 0 ) {
       inst_data->sig_info = siginfo;
    }
    else {
      curr_info->next = siginfo;
    }
      curr_info = siginfo;
  }

  inst_data->proc = mti_CreateProcess( "Test Process", checkValues,
                                      (void *)inst_data );
  mti_ScheduleWakeup( inst_data->proc, 6 );
}

void initForeign(
  mtiRegionIdT       region,   /* The ID of the region in which this     */
                               /* foreign architecture is instantiated.  */
  char              *param,    /* The last part of the string in the     */
                               /* foreign attribute.                     */
  mtiInterfaceListT *generics, /* A list of generics for the foreign model.*/
  mtiInterfaceListT *ports     /* A list of ports for the foreign model.   */
)
{
  mti_AddLoadDoneCB( initInstance, 0 );
} 

HDL code

entity for_model is
end for_model;

architecture a of for_model is
  attribute foreign of a : architecture is "initForeign for_model.sl;";
begin
end a;

library ieee;
use ieee.std_logic_1164.all;

entity top is

  type bitarray is array( 3 downto 0 ) of bit;

  type rectype is record
    a : bit;
    b : integer;
    c : bitarray;
  end record;

  type bigtime is range 0 to integer'high
    units
      hour;
      day   = 24 hour;
      week  = 7 day;
      month = 4 week;
      year  = 12 month;
    end units;

end top;

architecture a of top is

  signal bitsig      : bit       := '1';
  signal intsig      : integer   := 42;
  signal physsig     : bigtime   := 3 hour;
  signal realsig     : real      := 10.2;
  signal timesig     : time      := 3 ns;
  signal stdlogicsig : std_logic := 'H';

  signal stdlogicarr : std_logic_vector( 1 to 4 ) := "01LH";

  signal rec         : rectype   := ( '0', 0, "1001" );

  component for_model
  end component;

  for all : for_model use entity work.for_model(a);

begin

  inst1 : for_model;

  bitsig      <= not bitsig after 5 ns;
  intsig      <= intsig + 1 after 5 ns;
  physsig     <= physsig + 1 hour after 5 ns;
  realsig     <= realsig + 1.1 after 5 ns;
  timesig     <= timesig + 2 ns after 5 ns;
  stdlogicsig <= not stdlogicsig after 5 ns;

  stdlogicarr <= not stdlogicarr after 5 ns;

  rec.a       <= not rec.a after 5 ns;
  rec.b       <= rec.b + 1 after 5 ns;
  rec.c       <= not rec.c after 5 ns;

end a; 

Simulation output

% vsim -c top
Reading .../modeltech/sunos5/../tcl/vsim/pref.tcl 

# 5.4b

# vsim -c top 
# Loading .../modeltech/sunos5/../std.standard
# Loading .../modeltech/sunos5/../ieee.std_logic_1164(body)
# Loading work.top(a)
# Loading work.for_model(a)
# Loading ./for_model.sl
VSIM 1> run 15
# Time [0,6]:
#   Signal bitsig:  '0'
#   Signal intsig:  43
#   Signal physsig:  4
#   Signal realsig:  11.3
#   Signal timesig:  [0,5]
#   Signal stdlogicsig:  '0'
#   Signal stdlogicarr:  '1'  '0'  '1'  '0'
#   Signal rec:
#       '1'
#       1
#       '0'  '1'  '1'  '0'
# Time [0,11]:
#   Signal bitsig:  '1'
#   Signal intsig:  44
#   Signal physsig:  5
#   Signal realsig:  12.4
#   Signal timesig:  [0,7]
#   Signal stdlogicsig:  '1'
#   Signal stdlogicarr:  '0'  '1'  '0'  '1'
#   Signal rec:
#       '0'
#       2
#       '1'  '0'  '0'  '1'
VSIM 2> quit 


Model Technology Inc.
Voice: (503) 641-1340
Fax: (503)526-5410
http://www.model.com
sales@model.com
TOC PREV NEXT INDEX

ModelSim