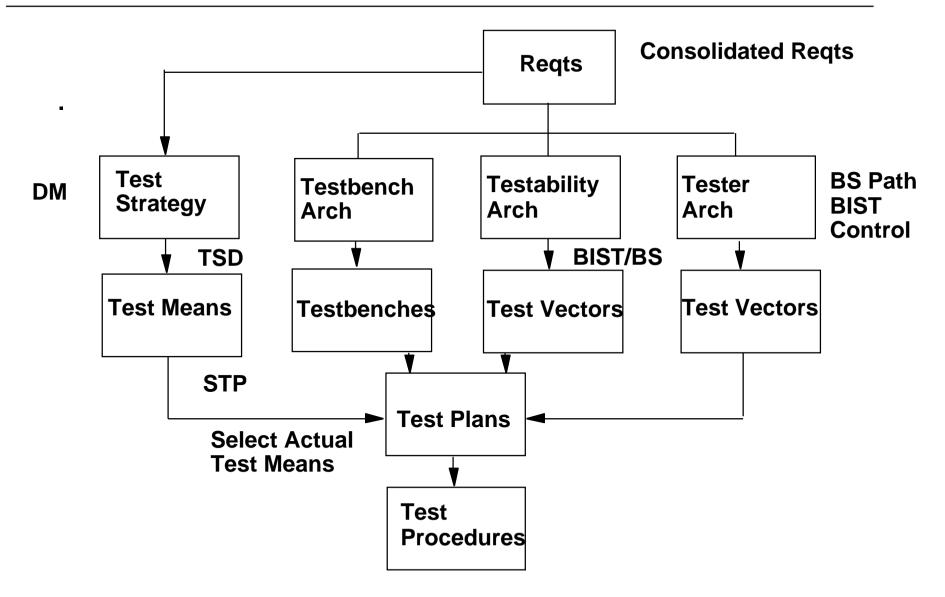


Application Of DFT To RASSP Benchmark 3

R. J. Tarzaiski (609) 338-4046 rtarzais@atl.lmco.com 3/28/96



- Functional Element (FE) consisting of 2 Arithmetic Processor boards (FPCAP) and 1 Controller board (FPCTL) to upgrade AN/UYS-2A processor FE
- Multiprocessor DSP applications
- High speed I/O, high processing throughput
- Fabricated as 3 SEM E boards
- Must meet memory and logic fault coverage specs during field deployment
- Must self check periodically
- Uses ASICS with BIST, MCMs, some non-BS components

- Selecting a Testability Architecture
- Defining Consolidated Requirements
- Construction of TSD0 and its derivatives
- Defining a Singular Test Philosophy
- Evaluation of available test means
- Role of Dependency Modeling

Procedure For Requirement Consolidation

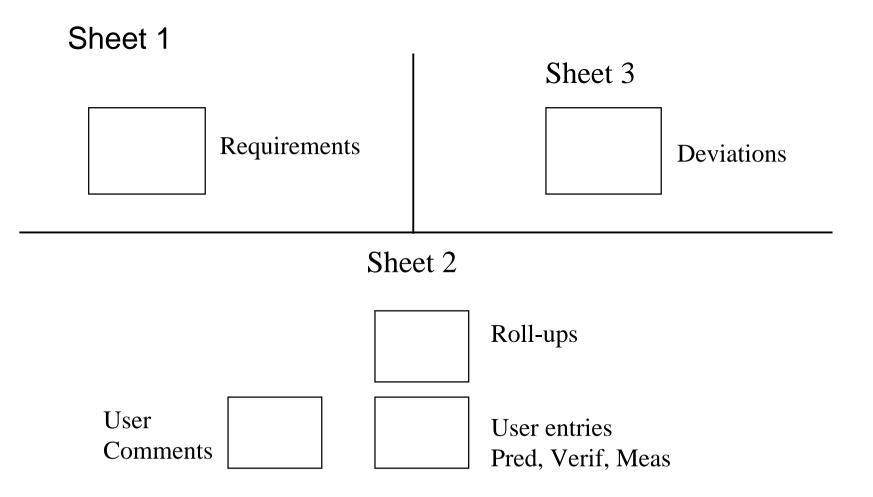
- Design, manufacture, and field reps complete phased requirements template set
- Merge flaws/faults in phases where possible using common test means and test support
- Formulate preliminary Singular Test Philosophy across phases
- Negotiate agreement on STP and add phase-specific supplements to STP where needed
- Add conformance requirements and generate formal document

Consolidated Test Requirements Contents

- Specific flaw/fault model for each requirement
- Quantitative metrics for detection, isolation, and correction requirements
- Customer and derived requirements for design, manufacturing and field tests
- Allocation of available test means to each requirement
- Conformance requirements

• Requirements Template used to formalize complete quantitative statement of requirement

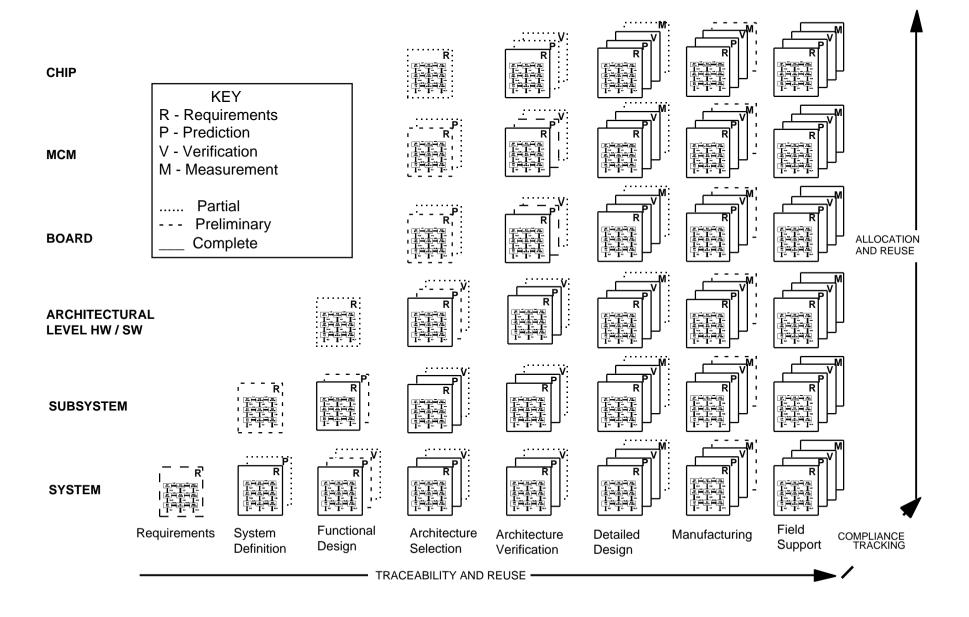
Consolidated Requirements and TSDs for RASSP Systems


- BM3 consolidated requirements and TSD0 can be entered into a reuse library to serve as basis for design of future systems
- Provide standards for DFT introduction into a project
- Impose a maximum reuse philosophy on available test means during all project phases
- Ensure positive contribution from test area toward performance improvement and cost reduction

- TSD describes effectiveness of test means for detection, isolation, and correction of flaws/faults
- TSD implemented as EXCEL workbook
- TSD0 begins with 3 worksheets
 - Requirements
 - Predicted values
 - Differences between requirements and predictions
- TSD0 will evolve to TSDn as system is better defined
 - Addition of worksheets to support monitoring verification and measurements at lower architectural levels
- Downward and upward data flow provided by EXCEL intersheet communication process

Typical TSD

- Consolidated Requirements document
 - supplies test means
 - supplies transfer function values to requirements sheet
- Test Time and Cost analysis for design, manufacturing, and field deployment phases
 - Project specific
 - Company specific
- Dependency model
 - aids in allocation of time and cost among test means



- Document the Singular Test Philosophy for all phases of a project
- Establish a monitored test strategy which will result in complete satisfaction of the consolidated requirements
- Compare predictions, verifications, and measurements to requirements throughout program life cycle
- Flag significant deviations from requirements
- Inform designer what is expected from different levels of test
- Ensure that test process is validated and accepted by designers

Hierarchy of Test Strategy Diagrams

- Original plan for TSD was complete population
 - Still valid concept where required
- TSD is a strategy evaluator and planning tool
 - Allocates cost, time, and fault coverage to test means
 - Allows consideration of effects of means interchange and fault coverage reallocation
- Hierarchical in nature to allow its use at various levels of packaging as required
 - All entries to all levels of system phases and packaging levels may not be needed
- TSD usage extent is **project** and **Company** specific

- Three quantitative measures used in BM3 TSD structure
 - Transfer Function for fault coverage
 - Cost Attribute
 - Time Attribute
- **Transfer function** values selected from experience base or specific knowledge of test means coverage
 - First assignments will be Predictions subject to modification
- Cost attribute values assigned on basis of economic analysis of the proposed application of test means sequence
 - may be based on previous experience
 - fixed (test equipment) and variable costs (labor)
- **Time attribute** value assigned primarily from experience base

- General Rule : Assign test means in order of "effectiveness" measured by
 - shortest test execution times
 - highest coverage
- Always minimize the number of faults passed on to expensive, time consuming tests (where possible)
 - Manual usually most expensive and slowest reserve for last
 - For BM3, the preferred performance sequence is :
 - BIST, BS-ATE, ATE, MANUAL
- Transfer functions combine as :
 - Total Coverage = (1 TF1)(1 TF2)(1 TF3) ...(1 TFn)
- Sequencing and magnitude variations trade-offs are a significant feature of the TSD

— Time and economic effects become manifest

- Must be based upon a specific project (e.g., BM3), a Company testing model (available test means) and the TSD structure for the project
- For BM3 the following test means are available
 - Inspection
 - BIST
 - BS-ATE
 - ATE
 - MANUAL
 - SIMULATION
 - OPERATIONAL TEST

- Number of FEs to be produced 500
 - Total number of boards 1500
- Labor rate \$75.00 per hour
- Production Interval 1 year
- ATE Investment for project \$500000
- Test Means are always Applied Where Specified in the TSDs - No Tests Skipped
- Some Overlap Exists Among Faults Detectable by Test Means - Efficiency Better than simple application implies

- Use efficiency factor to estimate this effect

Test Means	Fixture Cost	Non-Recur Labor	Test Eq	Cost/Board	
INSPECTION	1000	3000 (40 hr)	0	2.60	
BIST	1000	15000 (200 hr)	1000	11.33	
BS-ATE	4000	30000 (400 hr)	20000	36.00	
ATE	4000	30000 (400 hr)	500000	349.00	
MANUAL	1000	6000 (80 hr)	5000	8.00	
SIMULATION	0	30000 (400 hr)	0	20.00	
OPERATIONAL TEST - Normal Field Operation - No cost					

TOTAL FIXED COST / BOARD - \$ 426.93

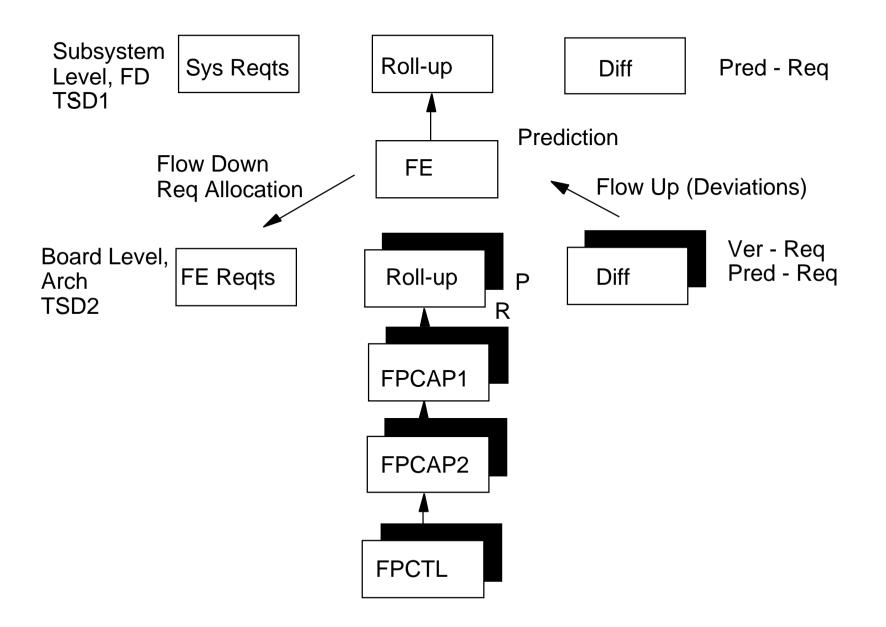
Test Time Performance per Board

Test Means	Indiv Test Time	Alloc Factor	Effic Factor	Effective Time
INSPECTION	300 s	1	1/1	300 s
BIST	0.1 s	8	8/8	0.8 s
BS-ATE	120 s	6	3/6	360 s
ATE	300 s	6	3/6	900 s
MANUAL	300 s	8	4/8	1200 s
SIMULATION	0			
OP TEST	0			

• Assumption - Variable cost is test labor time

Test Means	Test Time	Test Labor Cost/ Board		
INSPECTION	300 s	6.25		
BIST	0.8 s	-		
BS-ATE	360 s	7.50		
ATE	900 s	18.75		
MANUAL	1200 s	25.00		
SIMULATION - Part of Design Engineering Effort				
OPERATIONAL TEST - No additional cost for observation of results.				

- Total Variable Cost/Board (All Project Phases) 57.50
- Variable Costs lower than fixed costs in this case



 Fixed Cost / Board Variable Cost / Board 	\$ 426.93 \$ 57.50
• TOTAL COST / BOARD	\$ 484.43

• Cost of Test for 500 FEs (1500 Boards) \$726,645

TSD Hierarchy

Top Level Test Philosophy

Anomalies Test Means	Design Flaws	MFG- Open/ SAO-1/ Bridge	MFG- Dynamic	MFG- Netlist Violation	Field - Organiz. Level	Field - Depot
Simulation, VP, 1st Article	X					
BIST	Р	X	X		X	X
BS-ATE	X	X		Х	X	X
non BS-ATE	X	X	X	Х		X
Manual	X	X	X	X	X	X

- STP ultimately is implemented with specific tools which can provide flaw/fault detection, isolation, and correction (detection, isolation, correction)
- Test means are applied to groups of flaws/faults which have been established as significant sources of failures
- Detection, isolation, correction coverages provided in varying degrees by a known collection of available tools
- Mapping of available tools to specific flaw/faults allows generation of a detailed test plan from which test procedures will be developed
- Following charts show application of tools to the Benchmark 3 project

- Dependency modeling is an independent means for evaluating system testability
- Usable at various levels of packaging hierarchy from system through board/module
- TDM offers **earliest** recommendations can be used in parallel with early TSD generation
- Suggests what needs to be tested and whether it is testable
- Based upon criticality assignments (time, cost, and user preference) specified by the user
- Multiple tools available WSTA, STAT
- Allows "what if" analysis of test point assignment alternatives

Dependency Model (TDM) - Preliminary Test Definitions and Recommended Test Strategy based on user specified values of cost, MTTR, MTBF, and system criticality

Consolidated Requirements - TSD - Singular Test Philosophy Using Generic Test Means Applied in a Specific Order

TDM Recommended Test Sequence

- Ordered set of tests based upon
 - probability of component failure (MTBF)
 - user specified importance of tests (TestX)
 - test philosophy- cost/time criticality
- Test sequence proceeds to isolate faulty component
- Cost and time to repair are user inputs
- Testability analysis can proceed even if these quantities are not known (uniformity defaults)

Component	Cost	MTBF	MTTR
FPGA	1000	2x10 ⁶	2
Flash Mem	100	2x10 ⁶	.5
1.2V PS	300	5x10 ⁵	1
PAL	50	3x10 ⁶	.5
Clk Osc	100	6x10 ⁶	1
EDAC	100	2x10 ⁶	1
PN MCM	5000	1.1x10 ⁵	3
Comm MCM	4000	1.2x10 ⁵	3
Comm ASIC	300	.4x10 ⁶	2

Component	Cost	MTBF	MTTR
FIFO	150	1x10 ⁶	1
EPROM	100	3.8x10 ⁶	.5
Clk Buff	50	6x10 ⁶	.5
SRAM(8/set)	50	1.3x10 ⁵	1
DRAM(10/set)	50	1x10 ⁵	1
Scan Cntl	100	6x10 ⁶	1
Xcvr	50	9x10 ⁶	.5
FPCTL LBus	1000	107	4
FPCAP LBus	1000	10 ⁷	4

- Selection of a set of tests based upon test strategy which can certify that the system under test is operational
- Tests follow success path (pass path of binary pass-fail test tree of test strategy) to no fault aspect
- Fastest verification of operational status

- Listing of possible faults remaining after execution of any given test
- Begins at root node which contains all aspects
- Proceeds to terminal nodes which specify faulty member of system under test
- Used with test strategy to evaluate remaining fault possibilities during test sequence