
RASSP
Process • Architecture • Framework

Rapid Prototyping of
Application-Specific Signal Processors

Rapid Prototyping of Application-Specific Signal
Processors (RASSP)

RASSP Design For Testability
(DFT)

Methodology

Version 1.0

September 15, 1995

ADVANCED TECHNOLOGY LABORATORIES

ADVANCED TECHNOLOGY LABORATORIES

Rapid Prototyping of Application-Specific Signal
Processors (RASSP)

RASSP Design For Testability
(DFT)
Methodology

Version 1.0

Submitted By:

Lockheed Martin RASSP Team
Lockheed Martin Advanced Technology Laboratories
Bldg. A&E 2W
1 Federal Street
Camden, New Jersey 08102

Contract Number:

DAAL01-93-C-3380

Date:

September 15, 1995

 Notes for Users

Version 1.0 is being released for trial use by the Lockheed Martin ATL RASSP team and
designated government agencies. It represents the next step towards comprehensive Design-
for-Testability methodology that introduces new concepts for adoption into the RASSP
environment and that helps identify and direct the needs for new automated design-for-test tools
which enable the rapid prototyping of testable electronic digital systems.

It is expected that this document will be updated periodically as concepts are refined and any
deficiencies corrected during the trial use and implementation phases.

Please send all comments to:

Diana Brucoli
Lockheed Martin Advanced Technology Laboratories
One Federal Street, A&E/2NW
Camden, NJ 08102
609-338-4247 (voice)
609-338-4155 (fax)
dbrucoli@atl.lmco.com

Table of Contents

Section 1.0 Introduction 1-1
1.1 Purpose 1-1
1.2 Scope 1-1
1.3 Intended Audience 1-1
1.4 Document Organization 1-1
1.5 Relationship to Other Key Documents 1-1
1.6 Use of this Document and Tailoring to Organizations and/or

Projects
1-2

1.7 The Test Problem and the DFT Solution 1-2
1.8 Introductory Concepts 1-5
1.9 Overview of the Recommended Testability Architecture 1-12

Section 2.0 RASSP Goals And DFT Methodology Requirements 2-1
2.1 Concurrent Engineering 2-1
2.2 First Pass Success 2-1
2.3 Re-use 2-1
2.4 Automation and High Level Synthesis 2-2

Section 3.0 The RASSP DFT Methodology 3-1
3.1 Overview of the RASSP DFT Methodology and Its

Relationship to the Overall RASSP Methodology
3-1

3.2 Details of the DFT Methodology 3-14
3.3 Example of Application of the DFT Methodology 3-45
3.4 Support for Upgradeability and Extensibility 3-45
3.5 Integration of DFT into RASSP Enterprise System 3-45
3.6 Contribution of the DFT Methodology to RASSP Goals 3-51

Section 4.0 Summary 4-1

Section 5.0 Glossary 5-1
5.1 Acronyms and Abbreviations 5-1
5.2 Terms 5-4

Section 6.0 References 6-1
6.1 RASSP Documents 6-1
6.2 Non RASSP Documents 6-1

Appendix A Test Metrics/Tool Application Table (TMAT) A-1

Appendix B The RASSP DFT Methodology Flow Diagrams B-1

List of Illustrations

Figure 1-1 The test cycle 1-6
Figure 1-2 The expanded definition of “Testing” in the DFT Methodology 1-7
Figure 1-3 Application examples for the expanded definition of testing 1-8
Figure 1-4 Overview of the DFT Methodology 1-9
Figure 1-5 Recommended testability architecture 1-13

Figure 3-1a Relationship of test requirements, test strategies, and test
architectures

3-3

Figure 3-1b Relationship of test requirements, test strategies, and test
architectures across packaging hierarchy

3-3

Figure 3-2 The four dimensions of reuse in the DFT Methodology 3-7
Figure 3-3 Anatomy of a test strategy diagram 3-8
Figure 3-4 Hierarchy of test strategy diagrams 3-11
Figure 3-5 Example of a test strategy diagram in the field test phase for a

system with BIST and fault tolerance (requirements version)
3-12

Figure 3-6 Hypothetical board design for DFT methodology examples 3-13
Figure 3-7 Key data and development items correlated with process step 3-15
Figure 3-8 DFT steps in system definition flow diagram 3-17
Figure 3-9 DFT requirements analysis flow diagram 3-17
Figure 3-10 Template for specifying test and DFT/BIST requirements 3-18
Figure 3-11 Example of a top level test strategy diagram 3-20
Figure 3-12 DFT steps in functional definition flow diagram 3-23
Figure 3-13 DFT steps in architecture selection flow diagram 3-26
Figure 3-14 Example of a board level test strategy diagram for design phase test

strategy development and tradeoff analysis
3-28

Figure 3-15 Example of a test strategy diagram for board level production test
strategy development and tradeoffs

3-29

Figure 3-16 Example of a test strategy diagram for defect level/quality level
analysis during manufacturing

3-30

Figure 3-17 Example of a test strategy diagram for BIST requirements allocation
and tradeoff analysis for the field test phase

3-30

Figure 3-18 DFT steps in architecture verification flow diagram 3-33
Figure 3-19 One aspect of dealing with COTS in DFT solutions 3-36
Figure 3-20 Generic flow during detailed design 3-38
Figure 3-21 An example of test domain analysis 3-39
Figure 3-22a Lockheed Martin ATL example processor board 3-46
Figure 3-22b Lockheed Martin ATL example processing element 3-47
Figure 3-23 RASSP reuse meta data flow diagram 3-48
Figure 3-24 An example of authorization object hierarchy 3-48
Figure 3-25 Work flow for reusable component definition 3-50

Figure B-1a Detailed data flow diagram of the RASSP DFT Methodology B-2
Figure B-1b Detailed data flow diagram of the DFT subprocess steps during

architecture definition
B-6

List of Tables

Table 3-1 A sample of the numerous articles/literature which documents the
benefits of DFT

3-51

Table A-1 Test Metrics/Tool Application Table (TMAT) A-2

1.0 INTRODUCTION

1.1 Purpose

The RASSP Design-For-Testability (DFT) Methodology enables designers to create systems
that can be cost-effectively tested throughout their life cycles. Designs that adhere to this
methodology are made testable on the basis of various design for testability (DFT) and built-in-
self-test (BIST) techniques. The methodology covers various aspects of test and diagnosis at
the chip, MCM, board and system levels, including test requirements capture; test strategy
development; DFT and BIST architecture development; DFT and BIST design and insertion; test
pattern generation; test pattern evaluation; and test application and control. This methodology
provides the designer with a process for introducing testability requirements and constraints early
in the design cycle and for addressing DFT and BIST issues hierarchically at the chip, multichip
module (MCM), board, and system levels. The payback for early testability emphasis includes
lower test cost throughout the life cycle of the product, reduced design cycle time, improved
system quality, and enhanced system availability and maintainability.

1.2 Scope

The hierarchical design-for-test methodology described in this document provides RASSP
designers and test engineers with a process for introducing test requirements and strategies early
in the design cycle. It then provides them with procedures for addressing DFT and test strategy
selection and implementation issues at the chip, MCM, board, and system levels. The
methodology embodies several incremental layers of DFT strategy selection and implementation
activities which operate on successive refinements of the design, starting from the conceptual
(system specification) level down to the physical implementation level. The impact of test
decisions on meeting requirements is determined at all levels of the design. While the
methodology is not driven by specific test related tools, knowledge of the existing tools has been
used to ensure the practicality of the methodology. In addition, examples of tools are discussed
that can be used to automate various phases of the DFT processes.

As is true with the RASSP program in general, discussions of analog and mixed signal systems
are beyond the scope of the document.

1.3 Intended Audience

This document is intended for RASSP designers, manufacturing test engineers, and field
diagnostics engineers. Although, the prime focus is on the rapid design and prototyping of digital
signal processor systems, the methodology could also be used on other system application
projects (e.g., computers, telecommunications, etc.)

1.4 Document Organization

This document is organized into six basic sections. This section defines the purpose and scope
of the document, identifies how the document is to be used and its relationship to other RASSP
documents, and discusses the test problem and the DFT solution. Section 2 gives an overview
of RASSP goals and discusses requirements for the DFT Methodology, along with some
simplifying concepts. Section 3 is the focal point of the document, describing the details of the
RASSP methodology, as well as the relationship and contribution of the DFT methodology to the
RASSP goals and methodology. This section also addresses the many types of testing
throughout the life cycle phases of the system, while discussing applicable forms of DFT.
Sections 4, 5, and 6 provide a summary, glossary, and references respectively.

1.5 Relationship to Other Key Documents

There is a close relationship between this document and the overall RASSP Methodology
Overview Document. DFT and test activities are incorporated into the overall methodology

document at a high level. This document describes these activities in more detail and how they
interface with other RASSP design activities.

There is also a close relationship between this document and the RASSP Testability Architecture
Description. While the DFT Methodology discusses DFT processes, the Testability Architecture
Description discusses a prescribed testability architecture that is based on current DFT
techniques used in custom design and COTS design environments. The prescribed architecture
is both compatible with and derivable from the DFT Methodology. Since the Testability
Architecture reflects the details of the test related features of the RASSP Model Year Architecture,
all three documents have a strong relationship.

This document builds upon a wealth of test related knowledge captured in various military test
standards and testability handbooks, such as MIL-STD-2165A and its associated handbook,
MIL-HDBK-XX47 (2/28/92). Although the RASSP DFT methodology does not strictly follow the
detailed task descriptions of MIL-STD-2165A, the methodology supports many of the
philosophies of the standard, such as the following:

a. Establishment of sufficient, achievable, and affordable test strategies and architectures using
built-in features and external automated test equipment.

b. Integration of testability into systems during the architecture and detailed design processes.
c. Evaluation of the extent to which the design meets its testability requirements.
d. Inclusion of testability in the design review processes.

The use of VHDL and WAVES to capture and exchange test related information is an integral part
of the RASSP DFT Methodology. In addition to the documents that describe these various
standards, a preliminary draft manuscript for the documentation of military electronic computers
with the VHDL handbook describes DoD requirements for the use of VHDL and how it applies to
test related information (Chapter 8). The methodology described, herein, adheres to the guidance
provided in that handbook as appropriate.

1.6 Use of this Document and Tailoring to Organizations and/or Projects

Activities and tasks described are intended to be tailored to the particular needs of the system
being designed and to the development, manufacturing and field environments. Certain tasks
described may not be applicable in some cases. The methodology employs a hierarchical
refinement process. The number of iterations in that refinement process will vary depending on
the hierarchical decomposition of the system. The selection of test strategies and test
architectures is largely constraint driven in the RASSP methodology; and hence, the solution is
inherently tailored to system requirements and application and environment constraints.
However, based on the degree of use of COTS in the system, and the selected test strategy
and architecture, tailoring of specific process steps may be required.

1.7 The Test Problem and the DFT Solution

The general, design/engineering, production and field test problems are discussed. Then the DFT
solution is introduced.

1.7.1 The General Test Problem

Much of the problem of testing electronic systems today relates to the complexity of integrated
circuits and, in turn, the complexity of the multichip modules, boards, and systems incorporating
those ICs. The explosion in circuit complexity was first documented in the early 1970s by
Gordon Moore of Intel, who showed that the transistor density per chip was doubling
approximately every three years. That trend continued in the 1970s and into the 1980s.
However, as the 1990s approached and the new decade began, the increase in density actually
accelerated, such that today, it is not unusual to see a doubling of density within a one year
period or less.

Today, VLSI logic and memory chips can contain millions of transistors. In addition, it is now
possible to incorporate both digital and analog circuitry on the same chip. Boards and multichip
modules can contain tens or even hundreds of components, making their complexity an order of
magnitude or more greater than that of the integrated circuit.

Test problems associated with circuit complexity are further complicated by packaging

complexity. The use of surface mount technology, ball-grid arrays, fine component and
interconnect spacing, multichip modules, double-sided boards, multilayer boards, piggy back
boards, and conformal coating, all contribute to poor accessibility of nodes for physical test
probing.

1.7.2 The Design/Engineering Test Problem

During roughly the two decades spanning the mid-1960s to the mid-1980s, the use of logic
analyzers, and in the case of microprocessor-based systems, the additional use of in-circuit
emulators, have prevailed for debugging prototypes. The complement of tools has typically
been selected on the basis of its ability to help detect and analyze design and assembly
problems, as well as to aid in the integration of hardware and software. However, increased
emphasis on shortening the time to first customer delivery, improving quality, managing the
complexity of designs more effectively, and reducing overall life cycle costs, has resulted in a
growing interest in more efficient ways of performing design verification and prototype test.

Integration of hardware and software configuration items has always represented significant risk.
Unanticipated iterations between hardware and software components crop up which can result in
significant schedule delays. Compounding this problem is the integration of real-time software
into multiprocessor systems. Small timing differences can surface which compound over time
resulting in missed tasks and/or system halt. Debugging (detection and isolation) these
events/problems can add weeks to months depending upon the system size and the type of
problem.

At the same time, circuit and packaging technology have thwarted attempts to continue using
traditional logic analyzers and in-circuit emulators. For example, the advent of surface mount
technology has made the I/O signals on ICs inaccessible for probing and clipping. Additional
accessibility problems exist with systems that are tested after boards are conformally coated,
after the unit's enclosure is sealed, or perhaps when the entire unit is subjected to an
environmental test chamber, in which the only access is via connectors and cables.

Another problem facing traditional hardware debug approaches is that the growth in pin count has
made emulator and analyzer sockets and connectors complex, expensive, and cumbersome.
Complicating the problem is the fact that the tremendous increase in processor speeds has forced
analyzers and in-circuit emulators into a realm of speed that is not easily supported by their
external cabling techniques. Transmission line effects come into play, and signals in the test
interface become subject to noise or crosstalk problems.

Still another contributing problem is that the use of emulators in the past has required the
development of a processor model and interface for each new processor used. This recurring
expense has been very difficult to justify, since the typical life span of usage of such processors
has decreased over the years. Finally, the application of in-circuit emulators to multiprocessor
based designs has always been very difficult, if not impossible.

The net result of these problems plaguing traditional methods is that designers today are finding it
extremely difficult to perform adequate hardware debug and to verify correct hardware and
software integration.

1.7.3 The Production Test Problem

Increases in design complexity, performance and physical constraints poses a serious challenge
from the production testing point of view. Testing high performance integrated circuits and high
density boards or MCMs is a difficult task because of their performance, complexity and physical
and/or electrical constraints. System clock frequencies are surpassing the capabilities of
Automatic Test Equipment. Traditional test methods such as in-circuit probing cannot be applied
to new technologies such as Ball Grid Arrays, Surface Mounted parts and MCMs unless test
points are provided or new methodologies, such as boundary-scan, are applied.

Test generation is the process of generating test stimuli and predicting expected responses, while
test verification is the process of determining the fault coverage or effectiveness of the tests
through such techniques as fault simulation and physical fault injection. The problem with both
processes is that the time and cost required to perform them grows as the size of the circuit
grows. For example, it has been shown (Ibarra and Sahni) that for a digital circuit, the time
required for test generation or fault simulation grows exponentially as a function of the number of

gates in the circuit. Fortunately, through clever programming techniques, tailored algorithms,
expert system methods, hardware simulation accelerators, and the use of DFT, the increase in
test generation and fault simulation time has been brought down to a more manageable n2 or n3
relationship, where "n" is the number of gates in the digital circuit. Even with such improvement,
the cost of test generation and verification is still growing rapidly.

Another factor related to the production test problem is the cost of test equipment. It is not
unusual to spend half a million to over a million dollars for a board tester and easily more than a
million for a fully configured VLSI (chip) tester. Even ignoring the absolute dollar amount paid for
the production tester, since it's cost can be amortized over the total volume of product
manufactured, it is remarkable to consider the amount and complexity of test equipment required
just to test an IC.

1.7.4 The Field Test Problem

The same problems outlined above for production test also apply to field test. However, the
following additional constraints exist:

a. The cost of procuring and maintaining test equipment, as well as the cost to develop and
maintain TPSs, is outstripping budgets. As was the case with production testers, it is not
unusual to spend hundreds of thousands, if not millions, of dollars for the development or
purchase of an intermediate or depot level tester.

b. The cost of maintenance in general is ever increasing. It is no longer possible to support the
cost of three levels of maintenance in the field.

c. It is no longer practical to require highly skilled troubleshooters in the organizational levels to
perform diagnosis of system problems.

d. The cost of stocking spares (logistics) is driven by LRU cost and false alarms. Failures
identified in the field which cannot be duplicated at the depot (i.e., LRU was good and/or
system backplane was out of spec.) must be minimized.

The net result is that users are requiring built-in-test and diagnostics be supplied with electronic
equipment as a requirement on par with size, weight and power limitations.

1.7.5 The DFT Solution

Traditionally, test related design activities have occurred near the end of the design cycle. This
approach, Design-then-Test, causes delays and sometimes forces expensive design iterations.
To cost-effectively and rapidly produce high quality ICs, boards/MCMs and systems, systems
and components must be designed with test as a critical requirement. A design paradigm, known
as "design for testability," is increasingly being used in quality conscious organizations with a
Design-to-Profit and total customer satisfaction focus.

The key solution to alleviate this growing test problem is to utilize inherent structures and
incorporate additional test features into the design itself to facilitate test and diagnosis. These
design-for-testability features include internal scan and boundary-scan techniques, BIST
hardware and software, and test buses and controllers. DFT features such as boundary-scan
and BIST can eliminate the need for expensive testers and go/no-go or diagnostic test generation
by providing a mechanism for accessing and testing internal circuitry using built-in stimulus
generators and response evaluators. These features can also result in shortened design cycle
times, reduction in manufacturing test cost, improvement in test effectiveness, a quality
improvement in the shipped product, reduction in life cycle maintenance cost, etc.

However, DFT and BIST are not free. They may add to the size of the circuits, they may
introduce delays, they may add to the fabrication or assembly costs, they may reduce raw
manufacturing yield, and have other potential impacts. Weighing the pros and cons of various
test strategies is highly dependent on the design itself, the target application, the available tools
and equipment, etc. Key test strategy decisions have to be made early in the design cycle and
then continuously refined and implemented during the design process.

Numerous test methods are needed at various points during the manufacturing and life cycle
maintenance (e.g., functional test, interconnect test, structural component test, at-speed test, etc.)
Also many hardware options exist to support and facilitate these tests, ranging from scan to full
BIST. Designers need guidance in selecting the optimal test strategies and how to utilize these
methods cost-effectively throughout the system hierarchy.

At one extreme, we could require that every chip incorporate DFT and BIST. However, in most
cases, only a subset of the COTS chips may incorporate testability features, while others may
have no DFT features. This situation cannot be avoided because RASSP designs will very
likely contain COTS items that have varying degrees of testability. The problem then becomes
that of exploiting the partial DFT features in testing the system as much as possible and still
maintain a high level of test quality. Over time, it is quite possible that the needs and demands of
the RASSP program, as well as the rest of the industry, may drive requirements for incorporating
greater levels of testability and BIST in COTS equipment.

1.8 Introductory Concepts

Key concepts are introduced to precisely define their usage within the RASSP DFT Methodology.
The broadened scope of "testing" is covered leading into a description of the core test cycle
(Detection/Isolation/Correction - D/I/C) used in each process step. The importance of test
requirements compliance tracking is discussed. A life cycle view of testing is reviewed. In
keeping with the expanded definition of "testing" and the concept of the test cycle, the definition of
"design for testability" is broadened. Finally, key terms are defined so that they may be used in
the detailed process descriptions.

1.8.1 A Broadened Scope for the Concept of Testing

In the DFT Methodology, the term "testing" has been expanded to encompass any process
which detects and isolates and corrects anomalies (e.g., design flaws, manufacturing defects, field
defects) in any phase of the life cycle. The definition of testing is being broadened to enable the
concept of design for testability to be expanded so that an investment
in DFT provides the greatest contribution to achieving the RASSP 4x improvement goals in cycle
time, quality, and cost.

1.8.2 The Test Cycle

1.8.2.1 The Concept of the Test Cycle

While the broadened definition of testing covers many forms of testing from design verification to
manufacturing test to field diagnostics or depot testing, one common subprocess exists, which is
referred to in this document as "the test cycle." As depicted in Figure 1-1, the test cycle consists
of three functions: detection, isolation, and correction.

– "Detection" is the process of determining the presence of an anomaly, including design flaws,
manufacturing defects, and field defects.

– "Isolation" is the process of determining the location of the cause of the anomaly. In some
cases, it is desirable to isolate the anomaly to a functional area, such as might occur in a fault-
tolerant system capable of reconfiguring around failed functional areas. In other cases, it may
be desirable to isolate to a physical entity, such as a factory or field replaceable item.

– "Correction" is the process of removing and replacing the item causing the anomaly, such as
would occur in a manufacturing or field repair process. Depending upon context, it is also
considered to be the process of removing the damaging effect of the item causing the
anomaly, such as would be the case in a fault-tolerant system.

Detect Isolate

Correct

Singular
Approach

Figure 1-1. The test cycle.

There are other test related functions that have widespread application in the life cycle of a
system, such as test control, initialization, and recording and reporting of anomalies. While these
are important functions that will be discussed later in this document, they are not as fundamental
and not necessarily common to every test process in every phase of the life cycle, as the
functions defined in the "test cycle."

1.8.2.2 Test Requirements Compliance Tracking

One of the major philosophies espoused in this document is the concept of continuous, test
requirements compliance tracking through overlapping processes of prediction, verification, and
measurement (see Figure 1-4). "Prediction" is considered to be the process of determining
compliance to test requirements prior to the availability of a complete, detailed design. It is
accomplished through comparison with similar library elements or through analytic techniques,
such as circuit level testability measures or topological dependency models. Prediction is
performed from the System Definition process, through the Architecture Definition process, and
into the early stages of the Detailed Design process.

The latter part of the Architecture Definition process, along with the entire Detailed Design
process, and the early part of the Manufacturing process, are covered by the "Verification"
process of test requirements compliance tracking. Verification is performed when a detailed design
is available, and terminates during the Manufacturing stage, as higher volumes of physical
product become available for the “measurement” process. "Verification" makes use of such
techniques as deterministic fault simulation, probabilistic fault grading, and closed form proofs, for
such techniques as exhaustive type BIST approaches.

Finally, the "Measurement" compliance tracking process covers the latter part of the Detailed
Design process, along with the entire Manufacturing and Field Support processes.
"Measurement" compliance tracking process applies when test performance measurements can
be made on actual hardware and software, such as physical prototypes, manufactured or fielded
systems.

The three processes of prediction, verification, and measurement together provide feedback to
track test requirements compliance and to allow correction of deficiencies. In addition, the same
feedback is used to correlate the results of the tools used in the three overlapping compliance
tracking processes to assess their adequacy and permit improvement in the tracking processes
themselves.

Details of the compliance tracking processes, along with examples of applicable tools, are
discussed in Section 3 of this document.

1.8.3 A Life Cycle View of Testing

Consistent with the expanded definition of testing and the concept of the test cycle, the DFT
Methodology views testing as a life cycle process. As shown in Figure 1-2, the test cycle is
applied in every phase of the life cycle, and it is, of course, applied iteratively within each phase

System
Definition

Architecture
Definition

Detailed
Design Manufacturing

Field
Support

The “Testing” Process

Detect Isolate

Correct

Singular
Approach

Figure 1-2. The expanded definition of “Testing” in the DFT Methodology.

as well. Figure 1-3 provides some examples of the application of the expanded notion of testing
and the test cycle. As shown, the test cycle might manifest itself as a mental process during the
review of a requirements specification, as automated processes occurring during simulation or ATE
based testing, and as a built-in process through the execution of a BIST capability in an IC.

Figure 1-4 depicts the RASSP DFT Methodology embedded into the overall Methodology and the
test architecture embedded in the Model Year Architecture. In the RASSP System Definition
process, the test cycle can be applied to unearth inconsistencies or errors in requirement
specifications. This could be a human mental process or be facilitated by an automated tool. The
test cycle is also applied to determine anomalies during the execution of executable specifications
(E-Specs).

Isolate

Correct

Detect

Requirements
Specification

Simulation

Isolate

Correct

Detect

Automatic
Test

Equipment

Unit
Under
Test

Isolate

Correct

Detect

Isolate

Correct

Detect

BIST/Fault Tolerance

Figure 1-3. Application examples for the expanded definition of testing.

D
F

T
/B

IS
T

F
lo

w
do

w
n

an
d

Im
pl

em
en

ta
tio

n

D
es

ig
n

 D
et

ai
le

d

D
F

T
/B

IS
T

H
W

D
F

T
/B

IS
T

S
W

D
F

T
/B

IS
T

 S
tr

at
eg

y
an

d
A

rc
hi

te
ct

ur
e

D
ev

el
op

m
en

t

A
rc

h
it

ec
tu

re
 D

ef
in

it
io

n

R
A

S
S

P
 D

es
ig

n
 P

ro
ce

ss

H
W

/S
W

 C
od

es
ig

n

S
ys

te
m

D
ef

in
iti

on

D
et

ai
le

d
D

es
ig

n
H

W

R
A

S
S

P
 R

eu
se

 L
ib

ra
ry

•
S

ys
te

m
s

•
A

rc
hi

te
ct

ur
e

•
H

ar
dw

ar
e

•
S

of
tw

ar
e

•
T

es
t

•
E

tc
.

A
rc

hi
te

ct
ur

e
D

ef
in

iti
on

H
W

F
.D

.

M
od

el
 Y

ea
r

N
-1

 R
es

ul
ts

F
.D

.
M

an
u

fa
ct

u
ri

n
g

T
es

t
R

eq
's

.
C

us
to

m
er

 &
D

er
iv

ed

C
on

so
lid

at
ed

T
es

t
R

eq
ui

re
m

en
ts

S
ys

te
m

 D
ef

in
it

io
n

F
ie

ld
 T

es
t

&
A

R
M

 R
eq

.'s
.

C
us

to
m

er
 &

D
er

iv
ed

D
ev

el
o

p
m

en
t

T
es

t
R

eq
's

.
C

us
to

m
er

 &
D

er
iv

ed

P
R

E
D

IC
T

V
E

R
IF

Y
M

E
A

S
U

R
E

T
es

t
R

eq
ui

re
m

en
ts

C
om

pl
ia

nc
e

T
ra

ck
in

g

T
es

t

A
rc

hi
te

ct
ur

e

M
an

u
fa

ct
u

ri
n

g
/

In
te

g
ra

ti
o

n

an
d

 T
es

t

F
ie

ld
S

u
p

p
o

rt

D
F

T
 H

W
S

el
ec

t

T
S

D
0

T
A

0
T

S
D

1
T

A
1

T
S

D
2

T
A

2
T

S
D

3
T

A
3

T
S

D
4

T
S

D
5

V
P

0
V

P
1

V
P

2
V

P
3

F
ie

ld
S

u
p

p
o

rt
M

an
u

fa
ct

u
ri

n
g

/
In

te
g

ra
ti

o
n

 &

T
es

t

D
F

T
/B

IS
T

H
W

 V
er

.

D
F

T
/B

IS
T

S
W

 V
er

.
D

F
T

 S
W

S
el

ec
t

S
W

H
W

S
W

S
W

M
od

el
 Y

ea
r

A
rc

hi
te

ct
ur

e

JS
E

 1
5A

F
ig

u
re

 1
-4

.
 O

v
e

rv
ie

w
 o

f
th

e
 D

F
T

 M
e

th
o

d
o

lo
g

y.

In the RASSP Architecture Definition process, the test cycle would appear as part of such
processes as verification of functional allocation, behavioral and performance simulations, and
code verification.

In the RASSP Detailed Design process, the test cycle is used iteratively during such processes

as low level simulations and test vector generation and verification, as well as during insertion of
BIST.

In the Manufacturing process, the test cycle appears extensively, in all forms of testing, such as
functional test, in-circuit test, boundary-scan test, parametric test, environmental stress screening
(ESS), etc.

In the Field Support process, the test cycle appears in such processes as power-on BIST, on-
line and off-line BIST, depot level testing, etc.

1.8.4 A Broadened Scope for the Concept of Design for Testability

In keeping with the expanded definition of "testing" and the concept of the test cycle, the DFT
Methodology uses a broadened definition of "design for testability," as follows:

"Design for Testability" - The incorporation of a capability in any or all embodiment(s) of a
system, from requirements specification to architecture level to detailed hardware and software
designs, that will facilitate (DFT) or assimilate (BIST) the processes of detecting, isolating, and
correcting anomalies (design flaws, manufacturing defects, and field defects), originating from any
stage of the system's life cycle. The DFT feature or BIST capability should be usable or
invocable at any stage of the life cycle.

The motivation for this expanded definition of DFT comes from three factors:

a. The complexity of systems in all embodiments is increasing dramatically. Therefore, the
process of verifying and ensuring the problem-free state of a system throughout its life cycle
is becoming increasingly difficult and costly. The integration of DFT into the design process
and into many different embodiments of the system facilitates the management of that
complexity during the life cycle phases of testing. This contribution will aid in the reaching of
all three RASSP goals of cost and cycle time reduction and quality improvement.

b. The cost of correcting a latent problem increases significantly as a system transitions through
its life cycle phases. Catching problems earlier can be facilitated by more efficient and
effective testing facilitated by DFT embodiments in each phase. This supports the RASSP
goals of reducing cycle time and cost.

c. The test cycle is common to all stages of the product. Techniques and tools which support
the test cycle, including testability analysis tools, DFT techniques, and test vectors, etc.,
have the potential for reuse from one life cycle phase to other phases. For example,
boundary-scan implementations and PC-based boundary-scan testing may have been
instituted to facilitate debug and test generation in the design phase; but it could also be used
in the production phase, as well as for the field depot. This notion of stretching the application
domain supports the RASSP goals of high degree of reuse to shorten the time to delivery.

While the notion of DFT embodiments being used in each phase of the life cycle and being
integrated into all levels of the system hierarchy may seem far fetched at first, a look at the recent
trends in testing and testability principles suggests otherwise. In its early days of fruition, DFT
was focused almost entirely on board level techniques to solve board manufacturing test
problems. The well known ad hoc DFT techniques (partitioning, test points, clock control,
breaking feedback loops, etc.) emerged from those pioneering efforts. However, since those
early days, the following expansions in DFT scope have occurred:

a. The advent of DFT and BIST techniques implemented within chips, such as internal scan,
boundary-scan, circular BIST, STUMPS, and LOCST.

b. The beginnings of DFT and BIST synthesis at the high level design phase (e.g., behavioral
level), rather than at the back end of the process.

c. The advent of standardized and hierarchical system test buses, such as IEEE 1149.1 and
P1149.5.

d. Applications of DFT principles to software, such as the use of software partitioning,
embedded assertions for in-line checks, self-verifying objects, and recovery blocks.

e. Research into DFT structures for application to executable specifications.

These new embodiments of DFT are just a few signs that the industry is moving toward a
broader scope for the domain of DFT.

1.8.5 Definitions

While a glossary is provided in Section 5 of this document, several key terms and concepts need
to be defined at this point so that they may be used in the sections of the document that follow.

Anomalies - refers to the aggregate of physical faults and design flaws. The hierarchy for
physical anomalies is defects, which may cause failures, which are modeled as faults, and may
manifest themselves as errors in system operation. These apply to both the manufacturing and
field environments. They (from defects on) may be solid, transient, or intermittent. The design
anomaly hierarchy is flaws which may manifest themselves as errors in system operation.
Hence, the error category is where design anomalies and physical anomalies merge. The term
"fault model" applied to physical anomalies is correct. The term "design flaw model" is used to
handle design flaws.

BIST - The capability for an item to test itself, with minimal or no external test equipment. BIST
may be implemented in hardware or software at any level of packaging. In this document, BIST
is considered to be synonymous with "BIT" and "self-test." Furthermore, BIST is considered to
encompass "diagnostics" when it includes a fault isolation capability. Thus, BIST may provide
detection, isolation (diagnostics), and possibly correction (with fault tolerance).

BITE - Built-In Test Equipment - This term is not used in this document, since it traditionally
referred to a specific module for performing the test or BIST function. Today's technology dictates
that BIST be a much more distributed function, rather than being centralized in a single module.

Correction - The process of removing the cause (maintenance) or effects (fault tolerance) of a
design flaw, manufacturing defect or physical fault.

Debugging - A form of testing associated with the detection, isolation, and correction of design
flaws only.

Defect - A physical breakdown of an interconnection, such as a foil trace, connector, or cable, or a
physical breakdown of a device, such as a transistor, resistor, capacitor, etc.

Design Flaw - A mistake in the design or implementation of a circuit, assembly or software routine
which may result in an error in system operation.

Design-for-Testability - The incorporation of a capability in any or all embodiment(s) of a system,
from requirements specification to architecture level to detailed hardware and software designs,
that will facilitate (for external testing) or assimilate (for BIST) the processes of detecting, isolating,
and correcting anomalies (design flaws, manufacturing defects, and field defects), originating from
any stage of the system's life cycle. The DFT feature or BIST capability should be usable or
invocable at any stage of the life cycle.

Detection - The process of determining the presence of an anomaly, including design flaws,
manufacturing defects, and field defects.

Diagnosing - The phase of testing associated with locating the source of the anomaly.

Diagnostics - The fault isolation capability of DFT and BIST. Diagnostics, when implemented, is
considered to be an integral part of DFT and BIST and not a separate capability.

Embodiment - One form or instantiation of a system or its parts.

Error - Incorrect behavior of a system, sub-assembly or logic circuit, due to the effects of a design
flaw or the propagation of a physical fault through at least one level of gating.

Failure - Incorrect transistor level behavior of a logic circuit, due to the presence of a defect.

Fault - Incorrect gate level behavior, due to the presence of a failure.

Isolation - The process of determining the location of a design flaw or physical fault in a unit under
test.

Test and Maintenance Buses - A hierarchy of standardized buses used for communication of test
information between test and maintenance controllers. Examples are the IEEE 1149.1 and 1149.5
buses.

Test and Maintenance Controllers - A hierarchy of functions used to control system test and
maintenance activities. The functions communicate through a hierarchy of standardized test and
maintenance buses.

Test Means - A vehicle used to detect, isolate, and possible correct an item under test. The
nature of the vehicle and item under test depends on the life cycle step and level of system
hierarchy at which the test is applied. Examples are logic simulation, BIST, and PC-based
testers.

Testing - The process of detecting, isolating, and correcting an anomaly arising from any phase of
the system's life cycle.

Testability - An attribute of a design at any level of abstraction that reflects the ease with which
the item can be tested. Testability is considered poor if any characteristic of the item under test
makes it difficult to generate, evaluate, or apply tests. The testability attribute can be predicted,
verified, and measured to determine compliance with requirements.

1.9 Overview of the Recommended Testability Architecture

The prescribed RASSP testability architecture (see Figure 1-5) relies heavily on the use of BIST
and IEEE 1149.1 boundary-scan incorporated at the IC level. It also relies on the reuse of BIST
and boundary-scan tests at all packaging levels from the MCM-level to the system-level. COTS
components and/or designs are accommodated by use of the “lead, follow, or get out of the way”
philosophy. The “lead” concept suggests insertion or use of a COTS item or re-use item that
incorporates BIST or DFT features that can form the basis for a test. The “follow” concept
applies to COTS items that may not incorporate BIST or DFT features, but which at least do not
interfere with the test (e.g., simply pass the test vectors through to the next stage). Finally, the
“get out of the way” concept applies to COTS items which lack testability and BIST, and which
must be bypassed during the primary test process and dealt with separately for their own test.

Communication of test data across the packaging hierarchy is accomplished through a system of
hierarchical test and maintenance controllers and busses such as IEEE 1149.5.

Further details of the testability architecture can be found in the "RASSP Testability Architecture
Description."

LRU

LRU

Board

Board

• Bias towards Boundary Scan
and BIT but accommodate
COTS and use ATE when
required and/or practical

• “Lead - Follow - or Get out of
the Way” philosophy for
MCM/ board and system test

• Hierarchical array of dedi-
cated Test snd Maintenance
Busses and controllers
(1149.1, 1149.5, Scan Bridge,
and/or ASP as required)

• Re-usable (within and
between packaging level)
BIST controllers, PRPG’s and
SAR’s

• Spoilers accomodated
— COTS (RASSP encourages)
— NDI
— Development Only Contracts
— Expendables

LRU

LRU Test
Controller

Module
Executive

Board

Backplane

Board Test Controls

Test Bus

TAP

Chip

System Maintenance
Controller

System Maintenance Bus

Operating System

Chip Test Bus

TAP

Chip

TAP

Chip

JSE 22

Figure 1-5. Recommended testability architecture.

2.0 RASSP GOALS AND DFT METHODOLOGY REQUIREMENTS

The primary goal in the RASSP program is to provide an improvement of at least a factor of four in
the time required to conceptualize, design/upgrade, and field signal processor designs, with similar
improvements in design quality and life cycle cost. To achieve this goal MMC has developed an
overall methodology. The overall RASSP methodology emphasizes the following approaches:

– Concurrent Engineering
– First Pass Success
– Re-use designs and information
– Automation and High level synthesis

The DFT methodology emphasizes these approaches also. In addition, the DFT methodology
allows for the possibility of DFT refinement later in the design phase; supports feedback of in-
process data from production and field for incorporation into subsequent model years and new
designs. Furthermore, it is not driven by existing tools, but uses knowledge of tools to assess
the practicality of implementing the methodology.

2.1 Concurrent Engineering

The RASSP methodology emphasizes concurrent design practices between disciplines such as
systems, HW and SW design, and test. Concurrent engineering is emphasized by the insertion
of a new process step between systems and detailed design—Architecture Definition. This
process step brings the differing disciplines together for the up-front trade studies during which
90% of the system cost is determined.

In a concurrent methodology, the expertise of test, manufacturing, support, and reliability
engineers is integrated into the design process with a view toward all elements of the product life
cycle from conception through disposal, including quality, cost, schedule, and user requirements.
Hierarchical DFT analysis and synthesis methodology that is integrated with front end design
activities is essential to achieve the goals of concurrent engineering.

2.2 First Pass Success

First pass success of all hardware and software elements is required to eliminate time-consuming
and costly design rework cycles. An integrated approach is taken to hierarchical design
verification to improve design quality and performance. This process is emphasized by the
second part of Architecture Definition. After a preliminary architecture is selected, the architecture
is verified by co-simulation of hardware and software configuration items. By this process, risk
items are rapidly identified and addressed before detailed design commences.

2.3 Re-use

Maximum reuse of both hardware and software elements is required to achieve 4x decreases in
cycle time. Re-use elements include previous designs and Commercial Off the Shelf (COTS)
components, boards and systems. The Model Year Architecture is designed to ensure that re-
usable elements can be easily incorporated.

Design reuse is a key enabling technology for the model year concept. The DFT methodology
should maximize the reuse of all aspects of test related information, such as test requirements;
test strategies; DFT/BIST techniques; testable chips, MCMs, boards, and systems; BIST
software; and test vectors. It should support the concept of maximum reuse in many dimensions
(across packaging levels, across life cycle, etc.). Four dimensions of re-use are defined as
shown in Figure 3-2 of Section 3.

2.4 Automation and High Level Synthesis

Task automation and support for high level synthesis is required to help manage design and
documentation complexity. The level of design moves up from gates to behavior. Low level
design will be accomplished via synthesis and autocode generation tools. Designers working
with designs at the behavioral level have decreased insight into the lower levels where test is
normally inserted and graded. Hence, the capability to specify, synthesize and grade test
features must move up to the behavioral level also.

A system level perspective of test must be taken from the onset. The methodology must support
the capture and management of system test requirements. The implementation of the
methodology should embody user-friendly tools for assisting designers in selecting a practical
global test strategy, and then implementing and tracking that strategy in detail through the various
levels of the design hierarchy.

Ideally, test requirements and design requirements can be integrated prior to synthesis; and
hence, a testable-by-construction methodology is realized. An alternative approach is to
synthesize test features after design synthesis. The RASSP DFT methodology should primarily
support the former but provisions should be made to allow the latter, when existing design
components without required test features are used, or when tradeoffs, in terms of power, size,
and cost, prevent use of DFT features such as full scan.

To control test complexity growth while providing high fault coverage, the DFT techniques
employed within the Test Architecture and/or a RASSP design have to satisfy the following
characteristics:

– Support Hierarchical Integration - That is, the test capability can be used from ICs to boards
to chassis to systems and from design to manufacturing to the field.

– Be Flexible - Support the use of different techniques for different parts of the design to allow
for optimization.

– Facilitate and Enforce Re-use - Re-use of all elements of test and DFT. Certain DFT
techniques, such as internal scan, boundary-scan, and BIST, are re-usable at higher
packaging levels.

– Encourage Interoperability - Support standard test interfaces to enable mixing of components
with various test capabilities. The tools used to implement the methodology must be
compatible with the rest of the design tools via the use of standards such as VHDL and
WAVES to allow for easy integration. The tools must also be easy to use by the designer.

Finally, the number of new test-specific tools required to implement the methodology should be
kept to a minimum. Re-use of functional development tools such as requirements tracking, HDL
entry, simulators, synthesis and software development should be maximized to the greatest
extent possible.

3.0 THE RASSP DFT METHODOLOGY

3.1 Overview of the RASSP DFT Methodology and Its Relationship to the Overall
RASSP Methodology

An overview of the RASSP DFT Methodology and its relationship to the overall RASSP
Methodology is illustrated in Figure 1-4. It has some important features, as outlined below:

a. It is a methodology embedded in the RASSP methodology and proceeds concurrently. It is
deliberately not depicted as a separate process, but rather as an embedded subset of the
overall RASSP process.

b. It is driven by test requirements that span the entire life cycle of the system from design to
manufacturing to field support.

c. It promotes continuous tracking of compliance to requirements, rather than periodic tracking.
d. It forces attention to reuse in multiple dimensions, as discussed in a later section.

3.1.1 High Level Description of the DFT Methodology

Using Figures 1-4, 3-1a and 3-1b, a high level description of the DFT methodology is presented.
The methodology begins with a tangible management commitment. This tangible commitment
provides the budget and resources to proceed with the methodology.

System Definition involves test requirements specification. The test requirements come from an
integration of customer and derived requirements for the three phases of testing -design,
manufacturing, and field support. Specification involves a preliminary, life-cycle cost of test
analysis (if such an economics model is available), a test technology assessment, and a design
impact analysis to determine the realizability, consistency, and validity of the requirements.
Subsequently, during the same step, the three sets of requirements are consolidated into a
consolidated requirements specification. The purpose of consolidating the life cycle requirements
is to establish a single source of test requirements and, more importantly, to encourage all three
test organizations (design, manufacturing, and field) to explore the possibility of a singular test
philosophy that can be used throughout the entire life cycle of the system.

The Architecture Definition phase consists of three steps: functional design, architecture selection,
and architecture verification. In the functional design step, the consolidated test requirements are
used to develop the top level test strategy for the design, manufacturing, and field test phases.

In the architecture selection step, the top level test strategy is used to develop and evaluate
various candidate, top level test architectures, by determining which architecture(s) best supports
the top level test strategy with the least impact on the candidate functional architectures. Thus,
the impact of each test architecture on the candidate functional architectures is assessed and
incorporated into the tradeoff and selection process for them. The test requirements, test strategy,
and test architecture are then allocated to BIST/DFT hardware and software for one or more of the
selected architectures. In addition, candidate DFT and BIST techniques are identified for later
implementation, based on the specified requirements. Also in this step, any top level BIST
supervisory software development will begin, as will on-line BIST code, since it may have an
impact on performance and throughput. Prediction and verification processes begin in this stage
as appropriate for compliance tracking.

In the Architecture Verification step, the next level of detail of the selected test architecture(s) are
generated and additional details are provided regarding the test architecture impact on the selected
functional architecture(s). For example, behavioral and performance simulations will include
effects of DFT/BIST techniques, such as the estimated performance degradation due to hardware
concurrent fault detection circuits or due to periodic execution of on-line BIST software diagnostics.
Prediction and verification processes continue during this stage for compliance tracking.

In the Detailed Design phase, test strategies, architecture, and requirements are flowed down to
the detailed design of BIST/DFT hardware and software. The detailed design of the BIST/DFT
hardware is performed concurrently and interactively with functional design using automatic or
manual insertion and then is reflected into behavioral and structural simulation models, whenever
possible. The BIST/DFT detailed design is performed interactively with the functional design,
since each impacts the other. Any remaining BIST software (e.g., for power-up or other off-line
BIST functions) is implemented. Test vector sets are developed and verified for each packaging
level for physical prototype test, production test, and field test. All test vector sets are

documented using WAVES. Prediction, verification, and measurement processes are used in this
stage for requirements compliance tracking. All test vector sets are documented using WAVES.
As the detailed design is verified and debugged, design flaw models are updated to provide more
accurate models for the TSDs. Prediction, verification, and measurement processes are used in
this stage for requirements compliance tracking.

In the Manufacturing phase, functional and performance testing of the overall prototype is
performed to verify compliance to functional and performance requirements, with DFT and BIST
hardware and software included. Ongoing production test is performed. Verification and
measurement processes are used in this stage for compliance tracking to test requirements.
Measurement data is acquired through such techniques as automatic system fault history logging
and ATE-based data collection. BIST and tester-based test cost and performance data are
captured and encapsulated for the reuse library. Manufacturing defect analysis profiles and
distributions are used to update the manufacturing fault model for use in the TSDs.

In the field phase, BIST and DFT capabilities are in use. BIST and DFT functions are also used
for lower level (e.g., organizational and depot level) testing. Verification and measurement
processes are used in this stage for compliance tracking. As in the manufacturing phase,
measurement data is acquired through such techniques as automatic system fault history logging
and ATE-based data collection. BIST and tester-based test cost and performance data are
captured and encapsulated for the reuse library. Field defect analysis profiles and distributions
are used to update the field fault model for use in the TSDs.

Throughout the entire DFT methodology, interfacing is done to the RASSP reuse library to access
existing candidates and to add to the library when appropriate. In addition, feedback is being
provided continuously from the compliance tracking process back to the responsible persons to
assure corrective action is taken. Finally, it is recognized that iterations may be necessary
because of the inherent nature of the RASSP methodology.

3.1.2 Relationship of Test Requirements, Test Strategies, and Test Architectures

Figure 3-1a illustrates the relationship between test requirements, test strategies, and test
architectures. Figure 3-1b shows test requirements are flowed down the packaging hierarchy and
then compliance is verified as strategies and architectures are implemented. Test requirements
are requirements specifying the test fault coverage, test time, and other test parameters
associated with testing the Unit Under Test (UUT), which may be a chip, MCM, board, or
system. Test requirements do not include specification of test means, but instead, are allocated to
various test means during the development of "test strategies."

In this methodology, requirements are checked for realizability, consistency, and validity when
they are received, generated or specified. This process minimizes the problem where an invalid
requirement (such as 99% single stuck-at gate level fault detection for a design with 100% COTS
components) flows all the way down to the board level before it is found to be impossible to
meet. A test requirement is considered realizable if it can be achieved, given current test
technology, and system constraints (size, weight, power, degree of COTS, etc.). A test
requirement is consistent, if it does not contradict any other test requirements and is derivable from
the higher level requirement from which it flowed. Finally, a test requirement is valid if there is
currently a practical and cost effective means to predict, verify, and measure compliance to the
requirement. If there is a question about the realizability, consistency, and validity of a test
requirement, a mini-spiral can be initiated to further analyze the requirement. A requirement is
amended or deleted if it is not consistent, realizable, and valid.

Test Architecture (TA)

Test
Procedures

Test
Plans

Test
Strategies

(TSD)

DFT & BIST
Features, Test

Vectors

Test
Requirements

JSE 12A

Testability
Architecture

Testbench
Architecture

Test
Access &
Vectors

TestbenchesTest
Means

Tester
Architecture

Figure 3-1a. Relationship of test requirements, test strategies, and test architectures.

Subsystem

Board

MCM

Chip

System

Requirements

Predict, Verify & Measure

Test Architecture (TA)

Testbench
Architecture

Testability
Architecture

Tester
Architecture

Test
Procedures

Test Plans

Test Means

Test Strategies
(TSD)

Test Access
& Vectors

DFT & BIST
Testbenches

Test
Requirements

Features, Test
Vectors

Test Architecture (TA)

Testbench
Architecture

Testability
Architecture

Tester
Architecture

Test
Procedures

Test Plans

Test Means

Test Strategies
(TSD)

Test Access
& Vectors

DFT & BIST
Testbenches

Test
Requirements

Features, Test
Vectors

Test Architecture (TA)

Testbench
Architecture

Testability
Architecture

Tester
Architecture

Test
Procedures

Test Plans

Test Means

Test Strategies
(TSD)

Test Access
& Vectors

DFT & BIST
Testbenches

Test
Requirements

Features, Test
Vectors

Test Architecture (TA)
Testbench

Architecture
Testability

Architecture
Tester

Architecture

Test
Procedures

Test Plans

Test Means

Test Strategies

(TSD)

Test Access
& Vectors

DFT & BIST
Testbenches

Test
Requirements

Features, Test
Vectors

Test Architecture (TA)
Testbench

Architecture
Testability

Architecture
Tester

Architecture

Test
Procedures

Test Plans

Test Means

Test Strategies

(TSD)

Test Access
& Vectors

DFT & BIST
Testbenches

Test
Requirements

Features, Test
Vectors

JSE 19

Figure 3-1b. Relationship of test requirements, test strategies, and test architectures across
packaging hierarchy.

A test strategy is developed for each life cycle phase of testing (design, manufacturing, and field)
and defines the mix of test means by which the UUT will be tested. Test means can be built-in
self-test (hardware and/or software based), test equipment, and manual procedures. During the
development of the test strategy, test requirements drive the selection and mix of test means and
ultimately are allocated to each of the selected test means.

Test strategies, which are specified and managed by the use of “test strategy diagrams”
described below, drive the development of test plans and test procedures at each level of the
packaging hierarchy. Test plans describe a high level view of testing the UUT, including budget,
schedule, resources, capital equipment, and a description of the test flow. Test procedures give
the detailed, step by step procedures for testing the UUT. As with test requirements, test
strategies are checked for realizability, consistency, and validity when they are generated and
documented, before they are flowed down to the next lower level of abstraction.

A test architecture is a suite consisting of the UUT and any test equipment required, based on the
developed test strategy. The test architecture consists of the “testbench architecture” which
describes the simulation-based testbench for design-verification; the "testability architecture"
which describes the DFT and BIST features in the UUT; and the "tester architecture" which
describes the configuration of “test equipment” required for any externally based testing. During
the development of the testability architecture, the impact on the functional design, such as real
estate, I/O pins, performance, power, and reliability, is constantly evaluated to ensure it is
acceptable. Test architectures are checked for realizability, consistency, and validity when they
are generated and documented, before they are flowed down to the next level of abstraction (as
was done with the test requirements and strategies). Note, certain types of testability
architectures, such as those based on BIST and boundary-scan, are more robust than others, in
that they are applicable across the packaging hierarchy, as well as across all life cycle testing
phases.

As the system is decomposed into its constituent elements, test requirements, test strategies, and
test architectures are “flowed-down” to each level of hardware packaging and software
abstraction level. At each level, compliance to the higher level test requirements, strategies, and
architectures is checked. If at a lower level, it is impossible to adhere to the requirements,
strategy, or architecture, the previous level or levels are re-examined and analyzed to correct the
problems in those higher level requirements, strategy, or architecture. Note, the amount of
backtracking required should be minimized and problems should be identified earlier than in normal
methodologies, since the strategy and architecture are driven by the requirements and all three are
checked for realizability, consistency, and validity when they are generated initially at the front
end of the process and also when captured at each successive level.

3.1.3 Supporting Concepts

3.1.3.1 Metrics

"Metrics" are quantitative parameters used for two purposes in the methodology:

a. Requirements specification and compliance tracking
b. Tradeoff analysis and selection

Metrics can be categorized into four major categories: Performance, System Impact, Functional
Process Impact and Test Process Impact. A list of metrics for each category follows.

a. Performance (Specified Per Life Cycle Test Phase - Design, Manufacturing, and Field)

1. Controllability and observability
2. Fault detection coverage (w/assumed fault model)
3. Fault isolation coverage (w/assumed fault model)
4. Error correction coverage (w/assumed fault model)
5. Average, minimum, and maximum ambiguity group size
6. Average, minimum, and maximum position of replaceable item
7. Test pattern set size
8. Detection time
9. Isolation time
10. Correction time
11. False alarm rate

b. System Impact

1. Area overhead
2. Performance impact
3. I/O overhead
4. Power overhead
5. Reliability impact
6. Maintainability impact
7. Availability impact

c. Functional Process Impact

1.1 - 1.n. Impact on time for each functional process step.
2.1 - 2.n. Impact on cost for each functional process step.

d. Test Process Impact

1.1 - 1.n. Impact on time for each test process step.
2.1 - 2.n. Impact on cost for each test process step.

Performance metrics are specified for each life cycle test phase, since the values of the metrics, as
well as the associated “fault models” change from design to manufacturing to the field. Some of
the metrics can only be applied and/or predicted, verified, and measured at specific steps of the
process. This distinction is described in the TMAT table in Appendix A (Table A-1).

For a given model year or system, all of the above metrics could be used for requirements, and
none left for tradeoffs. In practice, such an approach may be impractical to manage and/or may
be too constraining. In most projects, the performance category above would be used for
requirements and the other three categories of metrics would be used for tradeoffs.

As noted in the discussion of requirements in Section 3.1.1 above: a metric cannot be used as a
requirement unless compliance can be predicted, verified, and measured. Before ruling out a
metric, however, consideration should be given to practical and cost effective means of estimating
compliance. For example, if a requirement for deterministic pattern fault detection coverage is
specified, it would normally be difficult to determine compliance prior to test pattern generation.
However, the use of pseudorandom patterns as a stimulus, graded by a probabilistic fault grader,
may be an acceptable prediction prior to performing full fault simulation on a deterministic test
pattern set. Note by performing such a procedure, testability information is made available early
in the process.

3.1.3.2 The Concept of the Test Metrics/Tool Application Table (TMAT)
(Table A-1 in Appendix A)

In the DFT Methodology, the choice of test related metrics, as well as the tools used to predict,
validate, and measure values for those metrics, is highly dependent on several factors:

a. The step in the process
b. The level of packaging or abstraction
c. The normal project constraints (schedule, budget, resources)

Since there is unlikely to be a single combination of metric and tool that would apply to all cases
of the above factors, for a given step in the Methodology, a selection-based approach is taken,
using what is called the Test Metrics/Tool Application Table (TMAT) (see Table A-1). The actual
matrix, which a preliminary version appears in the Appendix, provides the preferred metric/tool
pair for each process step entered in the methodology. The metrics all fall in the basic categories
described in Section 3.1.3.1. Once a process step is entered, the requirements captured, and the
test strategy and architecture developed, the TMAT is accessed and the proper metric/tool pairs
selected for each prediction, verification, or measurement activity in that process step. As new
tools (or even new metrics) emerge, the table can be updated. As the metric/tool pairs are used
in the methodology and their cost effectiveness and accuracy are observed, the table can be
updated relative to the preferred status of each pair. Hence, the TMAT should be tailored and
maintained by a given organization based upon their toolset and class of products being
designed.

3.1.3.3 Reuse Concept

One of the key ways in which the DFT Methodology contributes to the achievement of the
RASSP goals is through the enforcement of reuse of DFT in four different dimensions. As pictured
in Figure 3-2, the four dimensions of reuse are as follows:

a. Across the life cycle phases within a given model year. From system definition to field
support, each DFT/BIST embodiment or instantiation is designed for maximum reuse in the
phases to follow. Specifics of enforcement are discussed below in the discussion of the test
strategy diagram.

b. Across the packaging hierarchy within a given model year. From chip to system, each
DFT/BIST embodiment or instantiation is designed for maximum reuse in testing the package
levels above and below it. Specifics of enforcement are discussed below (test strategy
diagram and domain analysis).

c. Across a single packaging level within a given model year. Each DFT/BIST embodiment or
instantiation is designed for maximum reuse in testing other entities within the same package
level. For example, a board level BIST technique is examined to see if it can be used for
testing other boards in the system.

d. As new model years unfold, the RASSP reuse library is used to provide the outputs of some
steps in the process (rather than perform the step from scratch), and outputs of each process
step become candidates for encapsulation in the reuse library for future model years or
systems. Test related reuse items include, for example, test requirements; test strategies;
DFT/BIST techniques for certain logic structures; testable chips, MCMs, etc.; BIST software
modules; and test vector sets for certain library elements.

Examples of the types of information that would be useful to store are as listed below. Some of
these items (a & e) could be encapsulated in the reuse library and others could be captured in a
supplemental test information database.

a. Test item (i.e., test requirements, test strategy diagram, test architecture, test plan, test
procedure, POST control program, BIST SW primitive, BISTed ASIC, BISTed SRAM cell,
BIST controller, TAP controller, boundary scan register, scannable flip flop, etc.)

b. Description and/or documentation of an item
c. Other functional items that must be interfaced to (i.e., DSP, memory, I/O, etc.)
d. Other DFT/BIST items that must be interfaced to (See a. above)
e. Specification format and language (i.e., template)
f. Typical or specific values of metrics (See metrics section)
g. Applicable test phases (for a given test item, technique, etc.)
h. Applicable test modes (i.e., POST, on-line BIST, etc.)
i. Applicable process step
j. Applicable hardware or software structures (in which to embed item)
k. Applicable hardware or software structures (to apply item to)
l. Compatibility with interface standards
m. Compatibility with types of BIST or test equipmet

n. Tool environment and specific tool required for:
Implementation
Requirements Prediction
Requirements Verification
Requirements Measurement

o. Case histories (model year(s) or system(s) where used)
p. Literature references

System

Subsystem

Board/SW

MCM/SW

Chip/SW

System
Definition

Architecture
Definition

Detailed
Design

Manufacturing Field
Support

MODEL YEAR 1

MODEL YEAR N-1

MODEL YEAR N

…

Architectural
Level HW/SW

A
cr

o
ss

 P
ac

ka
g

in
g

 L
ev

el
s

Ac
ro

ss
 a

 S
in

gl
e

Pa
ck

ag
in

g
Le

ve
l

C
hi

p
A

to
 C

hi
p

B,
 B

oa
rd

 X
 to

 B
oa

rd
 Y

RASSP REUSE LIBRARY
Test Requirements
Test Strategies
DFT/BIST Techniques
Testable Chips, MCMs
BIST Software Modules
Test Vectors

…

Across the Life Cycle Phases

RASSP REUSE LIBRARY
Test Requirements
Test Strategies
DFT/BIST Techniques
Testable Chips, MCMs
BIST Software Modules
Test Vectors

…

…

RASSP REUSE LIBRARY
Test Requirements
Test Strategies
DFT/BIST Techniques
Testable Chips, MCMs
BIST Software Modules
Test Vectors

…

JSE 20

Figure 3-2. The four dimensions of reuse in the DFT Methodology.

3.1.3.4 Test Strategy Diagrams

The test strategy diagram (TSD) is a key construct used in the DFT Methodology to bridge from
requirements to implementation, manufacturing, and field; to "knit" all processes together; to
provide a means of carrying information between and within steps of the process; and to manage
the requirements specification and compliance tracking. The Test Strategy Diagram is used to
allocate a given "fault population" onto "test means" for detection, isolation and correction.

A "test means" is a vehicle used to detect, isolate, and possibly correct an item under test. The
nature of the vehicle and item under test depends on the life cycle step and level of system
hierarchy at which the test is applied. For example, during the architecture definition step, the
"vehicle" could be specified in general terms such as peer reviews, simulation, ATE, and BIST,
while the "item under test" might be specified as requirements specifications, behavioral model,
boards, and chips, respectively. On the other hand, in the detailed design stage, the vehicle
might be DSP ASIC team review, structural VHDL simulation, PC-based boundary-scan tester,
and circular BIST respectively, while the item under test might be DSP ASIC flowed down
manufacturing test requirements, DSP ASIC structural VHDL model, signal processing board
prototype, and DSP ASIC in manufacturing test.

The anatomy of a Test Strategy Diagram is shown in Figure 3-3. It consists of a three by "n"
array of cells, comprised of one row for each of the three test functions, detection, isolation, and
correction. The n columns correspond to n test means, such as BIST, ATE, or manual
procedures. Test means are listed in priority order from left to right, starting with the means that
has the highest fault detection coverage (or lowest cost) to the means on the right that has the
lowest fault detection coverage (or highest cost). The input to the array is the total population of
items or anomalies being tested for, and that total population is being operated on by the array.
Each cell in the array can be thought of as a flow graph, having one input and one or two
outputs.

…

TOTAL POPULATION IN UUT OF ITEMS BEING
DETECTED, ISOLATED, AND CORRECTED

TFD1

ATTR

Os

Os

DETECTION

ISOLATION

CORRECTION

Total
Population

Ou

TEST MEANS
1

TEST MEANS
2

TEST MEANS
N

 TEST MEANS

DEFINITIONS

ATTR Attributes being evaluated
(e.g., cost, time, quality, etc.)

Os Output successful (e.g.,
detected quantity)

Ou Output unsuccessful (e.g.,
undetected quantity)

TEST Means of performing test
MEANS (e.g., types of BIST, types of

test equipment, manual
procedures, etc.)

TF Transfer function (e.g., fault
coverage percent)

For example, design
flaws, manufacturing
defects, or field failures

TEST
FUNCTION

TFI1
ATTR

TFC1

ATTR

Os

Ou

Ou

TFD2

ATTR

Os

Os

Ou

TFI2
ATTR

TFC2

ATTR

Os

Ou

Ou

…

…

…

TFDN

ATTR

Os

Os

TFIN
ATTR

TFCN
ATTR

Os

JSE 13

Figure 3-3. Anatomy of a test strategy diagram.

Inside each cell is a transfer function or operator that acts on the input to produce the output(s).
The most common transfer function in the TSD examples in this document is the coverage
operator, which expresses the degree of detection, isolation, and correction coverage. It is stored
in the form a decimal value, displayed as a percentage and it is multiplied times the quantity
coming into the cell. Note, the transfer functions of test means are position dependent. That is
the transfer functions in the nth column operate on the residual population from the previous (n-1)

columns of items or anomalies being tested for.

The implied implementation of the TSD, as shown in the figures in this document, makes use of a
three dimensional spreadsheet paradigm, since it is a tool that is available in most companies.
However, it is certainly possible that a custom TSD tool could be developed in a compiled high
level language (e.g., C) and provide much faster operation, particularly for large systems, as well
as provide a more friendly graphical user interface. If the TSD concept were implemented in a
three dimensional spread sheet, the three dimensions would be test function (D/I/C), test means
(the strategy), and conformance tracking. If a modern spreadsheet such as MS Excel were used
books would be used to track conformance across the packaging hierarchy.

In addition to the transfer function, one or more attributes are associated with the cell. Examples
of important attributes are test time and cost , real estate penalty, quality levels, etc. Additional
ones may be used as appropriate. The values of the attributes are determined a priori and
stored in the cell. For example, a test time stored in the upper left cell in Figure 3-3 could represent
the time for test means #1 to detect a fault. A cost factor could include a one time (non-recurring)
cost for test generation and test evaluation, plus a recurring cost for test application that would be
incurred for each unit. The attribute normally is stored as a worst case value, although average
values could be used as appropriate.

Early in the methodology process, initial values for transfer functions would be requirements,
while the attributes (which might also be requirement values) and the anomaly population density
can be obtained from historical data accumulated in the reuse library (described above), can be
generated from new estimates (based on similar systems), or can make use of a variable to take
the place of a fixed value. As the methodology continues, actual values for transfer functions,
anomaly population densities, and attributes can be entered into the appropriate TSDs through
the prediction, verification, and measurement processes.

When a TSD cell is "activated," its attribute is factored into (usually by simple addition) the
accumulated value of that attribute through each path in the array intersecting with the cell. Thus,
test time and cost factors can be summed across test means and test functions. The test cost
information can be used for such applications as performing test strategy tradeoffs, manufacturing
cost budgeting, or maintenance and logistics planning. Test time information could be used, for
example, for input to a fault-tolerant system's availability model.

Each cell in the array has one or two outputs. The quantity exiting from the bottom of the cell
represents the "successful" quantity. For example, if the transfer function is fault coverage, the
quantity exiting from the bottom of the top left cell in Figure 3-3 represents the detected quantity of
faults. The quantity exiting horizontally represents the "unsuccessful" quantity, which in the
example cited above would be the undetected quantity of faults. The quantity of unsuccessfully
handled faults can be used, for example, as input to a manufacturing defect (quality) level
analysis.

The cells on the right side of Figure 3-3 are known as "terminating cells," because they represent
the last possible test means to achieve the detection, isolation, and correction. For that reason,
such cells have only one output, which is the one associated with the successful quantity. In the
case that a TSD lacks a terminating cell in the detection, isolation, or correction functions, the
implication is that that fault quantity must be handled during testing at the next higher level of
package testing. Therefore, fault quantities emanating from the right side of the TSD must be
included in the fault population for the next higher level of package, along with the new fault
population associated with that next higher level package. Thus, the TSD concept forces
consideration of all possible scenarios of fault detection, isolation, and correction. If 100% of the
faults must be detected, isolated, and corrected by some combination of BIST, test equipment,
and manual procedures, such as the case in the Integrated Diagnostic concept, the sum of all
faults entering the top of the systems TSDs must equal the sum of the outputs exiting at the
bottom of all TSDs across all packaging levels.

The TSD has many applications within the DFT Methodology. For example, its application to
managing test requirements and associated compliance tracking information is depicted in
Figure 3-4. A TSD would be generated to store the system level consolidated test requirements
discussed in Section 3.1 above (shown on the bottom left of the figure). The system level
requirements TSD can be used to flowdown the requirements to lower levels of the hierarchy,
thus producing a requirements TSD at each packaging level. As the prediction, verification, and
measurement data are generated during compliance tracking across the life cycle, a TSD is

generated for each set of data (P, V, and M) at each packaging level, and automatically is
compared against the requirements TSD values to flag compliance violations. A comparison
should also be done between the P-data, V-data and M-data, to assess continuously the
integrity of the prediction, verification, and measurement methods and tools.

The application of the TSD along the life cycle dimension in Figure 3-4 can be thought of as
providing traceability and reuse enforcement. This is accomplished by prohibiting the "collapsing"
of the TSD spreadsheet as the life cycle steps are traversed. For example, the establishment of
boundary-scan based PC testing during the design phase would automatically be carried forward
into the TSDs for manufacturing and the field to force at least an analysis of the potential reuse of
the test means in those stages.

The application of the TSD along the vertical (packaging hierarchy) dimension can be considered
as providing requirements allocation and reuse enforcement as well. In regard to the latter
application, the reuse enforcement is accomplished in a similar way as with the life cycle reuse
enforcement: by prohibiting the "collapsing" of the spreadsheets when integrating TSD values
up the hierarchy. In this methodology, it is required that a test means be carried up to at least one
higher level of packaging for analysis. For example, the use of BIST and boundary-scan in a
chip as a chip level test means would appear not only in the chip level TSD for that chip, but
those specific test means would reappear in the TSDs of at least the MCM or board in which that
chip resides. If that chip becomes the basis of a board level BIST capability, that board level
BIST must be considered a test means for the system level TSD. This philosophy forces the
evaluation of the contribution of low level test means (especially BIST) at the higher packaging
levels.

The application of the TSDs in the diagonal dimension in Figure 3-4 (R, P, V, M) represents the
means for managing compliance tracking information. TSDs with dashed or dotted lines represent
those that are preliminary or for which only partial information would be available in that life cycle
phase.

Figure 3-5 provides an example of a TSD for trading off, analyzing, and finally specifying the field
test requirements for a system having both BIST and fault tolerance requirements. This actual
example from a fault-tolerant avionics system assumed a fault model consisting of single stuck-at
faults as well as single transient or intermittent faults. In this example, failure rate is used as an
estimate of relative fault population densities and is shown at the top of the diagram. It is
important to note that this value was not derived from MIL-STD 217 MTBF predictions. It was
derived from a reliability model that assumed only the target faults defined in the fault model. The
total failure rate was allocated between the two types of faults based on some field failure studies
that showed similar systems in similar environments tended to experience four times as many
transient or intermittent failures as solid (stuck-at) failures.

Each failure rate total is entered into the top of the respective cell arrays. For both types of faults,
the detection, isolation, and correction requirements were entered into the cells for each of the three
allowed test means: BIST/fault tolerance, test equipment, and manual procedures. The
calculations were performed using test coverage and an attribute of test time. Fault coverage
numbers are multiplied times the failure rate number to indicate what percentage of the fault

See power point Fig. 3-4

100%
30 MINS

100%
2 HRS

100%
4 HRS

TEST
EQUIPMENT

(10 to 34.9 SECS)

NOTE:
The Correction Phase in the “Test Equipment” or “Manual Procedures” paths could also be handled by system level redundancy and reconfiguration.

SINGLE TRANSIENT/INTERMITTENT FAULTS

FAILURE RATE=333.36 X 10-6 F/HR

95%
400 ns

99%
0.5 SECS

100%
10 MINS

99%
400 µs

99%
5 SECS

100%
20 MINS

25%
1 µs

0%
10 SECS

100%
30 MINS

79.17 4.13 0.04

78.38 4.87 0.09

19.6 0.0 63.74

DETECTION

ISOLATION

CORRECTION

83.34

4.17 0.04

0.79 0.05

58.78 63.65

BIST/FAULT
TOLERANCE

(401.4 µs)

TEST
EQUIPMENT

(10 to 15.5 SECS)

MANUAL
PROCEDURES
(30 to 60 MINS)

316.69 16.5 0.17

313.52 19.47 0.37

156.76 0.0 176.6

333.36

16.67 0.17

3.17 0.2

156.76 176.23

TOTAL FAULT POPULATION
FAILURE RATE = 416.7 X 10-6 F/HR

SINGLE STUCK-AT FAULTS

FAILURE RATE - 83.34 X 10-6 F/HR

95%
400 ns

99%
8.3 SECS

99%
400 µs

99%
16.6 MINS

50%
2.1 µs

0%
10 SECS

DETECTION

ISOLATION

CORRECTION

BIST/FAULT
TOLERANCE

(402.5 µs)

MANUAL
PROCEDURES
(30 to 6.5 HRS)

JSE 23

Figure 3-5. Example of a test strategy diagram in the field test phase for a system with BIST
and fault tolerance (requirements version).

population is successfully detected, isolated, and corrected by each of the test means. The test
time attribute is activated when the transfer function is applied to the fault population entering a
given TSD cell. The TSD allows for the analysis of each scenario of handling faults by any
combination of the three allowed test means, providing the possible values of total test time
through each scenario path (shown exiting at the bottom of each array column). At a later date, a
cost figure was associated with the test time, and a cost of test analysis was performed to
provide another dimension of tradeoffs to further refine the requirements. Eventually, after many
"what-if scenarios" using the TSD, the requirements as shown in Figure 3-5 were finalized.

3.1.3.5 Board Design Example Used For Illustration In The Methodology Discussions

Figure 3-6 shows a hypothetical board design that will be used to illustrate examples of several
concepts in the DFT methodology. Although it is hypothetical, it does represent a reasonable set
of functions sometimes used in the digital sections of communications systems. There is a
transmit path consisting of an incoming 32 bit parallel bus going to some receivers and a 32 bit
register consisting of four octal register chips. The 32 bit register feeds a memory bus, whose
read data bus in turn feeds some data path logic that ultimately produces a high speed bit serial
data path that exits the board. The receive path is identical except, its signal path is in the
opposite direction. It is important to note that the two SRAM arrays (transmit and receive) are
separate entities with separate buses. Dedicated DSPs handle signal processing functions for
the receive and transmit paths.

Data
Path
Logic

Bus
Driver

High
Speed

Serial
Bus

Read Data
Buses

Write Data
Buses32

 B
it

B
us

32
Bit

Reg

Bus
Receivers

32 32

DSP

32

RAM

Addr Logic

WR RD

ADR
3232

32

Data
Path
Logic

Bus
Recvr

High
Speed

Serial
Bus

32
Bit

Reg

Bus
Drivers

32 32

DSP

32

RAM

Addr Logic

WR RD

ADR

3232

32

BOARD

JSE 24

Figure 3-6. Hypothetical board design for DFT methodology examples.

3.2 Details of the RASSP DFT Methodology

Figure B-1a (see Appendix B) depicts the overall process. As shown in Figure B-1a, the
process is comprised of five processes:

- System Definition Process
- Architecture Definition Process
- Detailed Design Process
- Manufacturing Process
- Field Support Process

Figure B-1b depicts the subprocess steps within architecture definition (functional design,
architecture selection, and architecture verification).

Figure 3-7 shows the development of key data items as the methodology progresses through the
process steps.

Descriptions of each process step are included below. The description of each process step is
comprised of:

1. Inputs
2. Process
3. Outputs
4. Handling of COTS
5. Risk management/Mini-Spirals
6. Interface to Reuse Library
7. Interface to Overall RASSP Methodology and Tools

Each section begins with a top level description of the activities being performed concurrently in
the development of the overall processor system (i.e., normal functional modes or non-test
related). A subprocess chart with more detail is included with each section.

System
Definition

Functional
Design

Arch.
Selection Arch. Verif.

Detailed
Design

Mfg.
Integration
and Test

Field
Support

Requirements Consolid.;
Checked
for valid,
consistent,
and reliable

Implication;
Modes and
Isolation
specs

Flow down
to
board level

Flow down
to DSPs,
ASICs and
Logic
Blocks

Verify and
prel.
measure

Measure,
Update and
Feedback

Measure,
Update and
Feedback

Fault Models Preliminary Refined Refined Completed Updates and
Feedback

Updates
and
Feedback

Updates
and
Feedback

Test Benches VP0 (prel) VP1 VP1 VP2 VP3 - -
Test
Strategies
(TSD)

TSD0 (prel) TSD1 TSD1 TSD2 TSD3 TSD4 TSD5

Test
Architecture
(TA)

TA0 (prel) TA1 TA1 TA2 TA3 - -

Test and
Diagnostic
Plans

System
Accept.
Test

Subsystem
Accept.
Test

Prel. Board
Accept.
Test

Board and
Special
Chip (i.e.
bare die,
ASICs)

Chip to
System Mfg.
and Field

Updates
and
Feedback

Updates
and
Feedback

Test and
Diagnostic
Vectors

System
Accept.
Test

Subsystem
Accept.
Test

Prel. Board
Accept.
Test

Prel.
Design
Verification

Des. Ver.,
Prod. and
Field

Updates
and
Feedback

Updates
and
Feedback

Test and
Diagnostic
Procedures

- - Prel.
System
and
Subsystem
Accept.
Test

System
and
Subsystem
Accept.
Test

Chip to
System Mfg.
and Field

Updates
and
Feedback

Updates
and
Feedback

BIST HW/SW
Allocation

- 1st Pass Preliminary Completed Updates and
Feedback

- -

BIST and DFT
HW

- - High Level
Models

Behavioral
Models

Structural
Models;
Synthesis;
Implement

Updates
and
Feedback

Updates
and
Feedback

BIST SW CP
and DFGs

- On-LIne
BIST

On-LIne
BIST
Target
Dependent

On-LIne
BIST
Equivalent
DFGs

Post , On-
Line and Off-
Line BIST,
Self
Diagnostics

Updates
and
Feedback

Updates
and
Feedback

BIST SW
Primitives

As
Required

As
Required

As
Required

As
Required

As Required Updates
and
Feedback

Updates
and
Feedback

Figure 3-7. Key data and development items correlated with process step.

3.2.1 System Definition Step

Requirements are derived from customer and/or parent system requirements and maintained
during the system definition process. All of the functions including test functions such as BIST are
partitioned into processor system and subsystem functions. An overall model of the processor
system is developed which is referred to as VP0. This model together with testbenches
represents the inputs, outputs and transformations of the inputs by the processor system
including latency. Key outputs of the DFT efforts are the preliminary test strategy diagram, TSD0,
and testability architecture, TA0. Figure 3-8 shows the DFT steps which occur during the system
definition step. The key step, requirements analysis, is shown in more detail in Figure 3-9.

3.2.1.1 Inputs

The inputs to this process step are as follows:

3.2.1.1.1 Inputs from Overall RASSP Processes

iRa. RASSP Reuse library Step 2, 5,
10 and 11

iRb. Information on project commitment to DFT (resources, tools, schedule,
budget, etc.)

Step 3

iRc. Customer requirements for design, manufacturing, and field test;
maintenance requirements; quality requirements; availability,
reliability, and maintainability requirements

Step 4

iRd. Historical hardware and software design flaw statistics for previous
model years or systems

Step 5

iRe. Manufacturing defect profiles and statistics for previous model years
or systems

Step 5

iRf. Field failure profiles and statistics for previous model years or
systems

Step 5

iRg. System constraints (size, weight, power, etc.) Step 6
iRh. High level system functional description Step 10
iRi. Emerging partitioning of system into subsystems Step 10

3.2.1.1.2 Inputs from DFT Processes

iDa. The TMAT Table Step 1
iDb Testability Architecture Description Step 10

3.2.1.2 Process

The following activities take place in this process step:

1. Using iDa, access the Test Metrics/Tool Application Table and select metrics/tool pairs for use
during this step. Maintain and update these metrics throughout the process. Capture and
review final values before exiting the process.

2. Using iRa, check the reuse library for candidate reuse elements for this step (i.e.,
requirements, fault models, TSD0, TA0, VP0 T&M Controller and Bus models) .

3. Using iRb, assess the presence of sufficient, tangible management commitment to the DFT
process (resources, tools, capital equipment, schedule, budget, etc.).

4. Using iRc, capture customer test requirements. Expand and refine the customer test
requirements specification, using the template shown in Figure 3-10. This template forces the
contractor to remove the ambiguity from the spec and resolve all open issues up front.
Negotiations and discussions with the customer would usually be necessary.

(1&2)
Check TMAT,
& Reuse Lib

(3)
Assess Mgt
commitment

(Rh)
Reuse
Library

(Da)
TMAT

(4-9)
Requirements

Analysis &
Consolidation

(Ri)
Resources,

tools,
cap. equip.
schedule,

budget

(Ra)
Customer

Test
Requirements

(Rc & Rd)
System

Functional Descr.
& Partitioning

Testability
Architecture
Description

(10d) Assess
partitioning
candidates

(10b) Develop
Initial

System TSD

(10a)
Develop Initial

Test Architecture

Valid
Req'ts?

 Mgt
Commit?

(10c) Analyze
Partition C/O &
Ambig. Groups

(11) Update VP0
 w/ High Level
test arch &
perf. impact.

&
Updated

VP0
e-spec

(Rb)
System

Constraints
(size, wt, power)

(Re, Rf& Rg)
Model Year 1-(n-1)

anomaly data

(a)
Approved,

consolidated
test req't

(b) Preliminary
System TSD
& Testability
Architecture

NO

NO

(d)
Fault

Models

(c)
Partition

Testability
Assessment

(Rh)
Reuse
Library

Reuse?

YES

Figure 3-8. DFT steps in system definition flow diagram.

(4)
Capture Cust.

Test Req'ts

(5a)
Mfg & Int Req'ts

(6&7)
Verify & Analyze

Requirements
& fault models

(5a)
Field Supp't Req'ts

(5a)
Des. Ver. Req'ts

(8)
Consolidate

Test
Requirements

(Rh)
Reuse
Library

Reuse?

(Ra)
Cust. Req'ts:
des, mfg, field
maint., quality,
avail., reliab.,

(a)
Consolidated

Test
Requirements

(Re)
Model Year 1-(n-1)

design flaw data

(Rf)
Model Year 1-(n-1)

mfg defect data

(Rg)
Model Year 1-(n-1)

field failure data (d)
Fault

Models

(9)
Customer
Accept?

NO

YES

Requirements
& Fault Models

Figure 3-9. DFT requirements analysis flow diagram.

1 . Requirement Name (e.g., fault detection)
a . Test Phase

• Design (e.g., simulation, prototype debug, qualification test, etc.)

• Production (e.g., go/no test, diagnostic test, repair verification, etc.)
• Field (e.g., operational, organizational, intermediate, depot)

b. Test Means
• BIST
• Test Equipment
• Manual procedures
• Mix of above

c . Test Mode
• Power-on test
• On-line concurrent (including interfering vs. non-interfering)
• On-line non-concurrent (including periodic vs. event-driven, operator invoked or software

invoked)
• Off-line

d. Degree of Allowable External Support
• Operator may be “in the loop” to help achieve requirement
• Troubleshooter may be “in the loop” to help achieve requirement
• Job performance aid may be used to help achieve requirement

e . Fault Model Assumption
The definition of a “fault.” For example, single stuck-at fault, multiple stuck-at fault, delay fault, intermittent
fault, transient fault, etc.

f . Quantitative Definition of Metric
An equation defining the metric. For example, fault detection coverage might be defined as the total number
of faults detected automatically by BIST, divided by the number of possible faults, with “fault” defined by the
fault model above.

g. Prediction and Validation Weighing Factors
The factors used to allocate the requirements and later, to calculate system values from lower level values.
For example, failure rate, usage rate, mission criticality etc.

h. Quantitative Requirement
The actual quantitative requirement, calculated by the “quantitative definition” above. For example “98%.”

i . Allowable Requirement Compliance Tracking Methodologies
The means that may be used to track compliance to the requirement throughout the life cycle of the system.
For example, topological dependency models at the prediction stage, fault simulation at the validation
stage, and instrumentation or automatic fault-history logging at the measurement stage.

2. Metric Name (e.g., fault isolation coverage
a .
b.
…

Figure 3-10. Template for specifying test and DFT/BIST requirements.

5. Using iRa, check the reuse library for any test requirements that are lacking within the
customer requirements for the three phases of testing (see Section 3.1.3.3). Using the
necessary organizations, establish test requirements for each of the three phases of testing,
including derived requirements, using the template shown in Figure 3-10.

As part of this step, using iRd through iRf, begin the development of a "fault model" for each
of the three phases of testing, using either the default "fault model" from the reuse library" or
establish a set of new fault models, based on the design flaw, manufacturing defect and field
defect statistics provided as inputs to this process step. The fault model will be refined in the
Architecture Selection Process.

6. Using iRg, verify that all requirements are realizable, consistent, and valid. Realizability
should be checked particularly in light of system constraints, iRg. Generate a mini-spiral if
necessary for requirements that are questionable.

7. Using the organizations associated with the three phases of testing, consolidate the three
groups of test requirements into a single "consolidated test specification" document. This step
provides two benefits:

- It creates a single spec in which all test related requirements exist for the entire life cycle of
the system.

- It forces the organizations responsible for the three phases of test to meet, where they
can critique each others specs, fill in transition gaps in requirements, remove ambiguities,
and negotiate tradeoffs. The objective should be development of a singular test
philosophy and test architecture concept that will satisfy all of the needs of the three test
phases (a step that will follow in the Architecture Definition stage). This effort will avoid
the traditional situation, where three diverse test strategies, test equipment sets, and test
vector sets are developed in three independent processes.

8. Analyze partial or full requirements or analyses results for possible inclusion in the RASSP
reuse library.

9. Seek customer buy-off on the consolidated test requirements specification

10. Using iRh and iRi, interact with RASSP subsystem partitioning efforts. More specifically,
perform the following:

a. Using the consolidated test requirements, analyze and develop the preliminary system-
level Test Strategy Diagram, TSD0 (see Figure 3-4, Hierarchy of Test Strategy
Diagrams). The test strategy diagram allocates the test requirements to BIST, test
equipment, and manual procedures. The preference should be the use of BIST and
boundary-scan whenever possible, based on the preferred Test Architecture described
earlier in this document and illustrated in Figure 1-5. The test strategy is developed using
the TSD method discussed earlier and illustrated in Figure 3-11 and previous Figures 3-3
through 3-5. Figure 3-11 shows the top level TSD used to capture the initial test strategy
developed in this stage. The default case for this diagram is that the test means is the
same for all three phases of testing, unless modified during this process step.

Initial values for transfer functions in the TSD would be requirements, while the attributes
(which might also be requirement values) and the anomaly population density can be
obtained from historical data accumulated in the reuse library, can be generated from new
estimates (based on similar systems), or can make use of a variable to take the place of a
fixed value. As the process continues, actual values for transfer functions, anomaly
population densities, and attributes are entered into the appropriate TSDs through the
prediction, verification, and measurement processes.

While different test strategies for the three phases of test is allowed/supported, it is
recommended that the three test organizations jointly develop a common test strategy (for
example, based on simulation, PC based boundary-scan test, and BIST). While some
forms of testing, such as IDDQ, may be specific to one phase of testing, due to a unique
fault model assumption, it should still be possible to establish a common overall test
strategy for the three phases. Each organization could then map that strategy onto their
own TSD to observe its impact for their "fault" model assumptions and test environments.

b. Develop initial test architecture (TA0), at the system/subsystem stage, including creation
of test bus interface and test controller hierarchies, based on the ideal test architecture
described earlier.

Design
Flaws

KEY

% Cov. - % Coverage
TT - Test Time
TC - Test Cost

DETECTION

ISOLATION

CORRECTION

DESIGN
“TEST”

MANUFAC-
TURING

TEST

FIELD
TEST

Manufacturing
Faults

Total Population of Anomalies

Field
Faults

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

FIELD
TEST

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

MANUFAC-
TURING

TEST

FIELD
TEST

% Cov.
TT
TC

% Cov.
TT
TC

% Cov.
TT
TC

JSE 26

Figure 3-11. Example of a top level test strategy diagram.

c. Use controllability/observability analysis (e.g., using a topological dependency model) to
analyze the inherent testability of the proposed system/subsystem partitioning. Assess
impact on meeting requirements, and assure adequate fault isolation capabilities, as well
as ambiguity group sizes and characteristics.

d. Using the analysis on step (b) above, assess subsystem partitioning candidates on the
basis of supporting the preliminary concept of the test architecture and ability to support
compliance to test requirements.

11. Reflect preliminary concept of the test architecture (TA0) into the executable specification for
VP0. In the system model portion, include DFT and BIST features (e.g., test buses and
controllers) where possible in the system functionality data. Incorporate estimated
degradation factors in system performance data to accommodate any predicted on-line BIST
impact. Include BIST/DFT requirements in physical constraint data, (iRb). In the test bench
portion, include proper stimulus and response data to verify BIST/DFT functionality and
where possible, to validate test requirements compliance during VP0 simulations.
Performance simulations should verify that functional performance, degraded by any
estimated on-line BIST impact, still meets performance requirements. Back-annotations of the
e-spec should be done, based on more detailed level simulations at later points.

3.2.1.3 Outputs

3.2.1.3.1 Outputs to the Overall RASSP Processes

oRa. Test related elements for the reuse library. Step 8, 10
and 11

oRb. VP0 e-spec updated based on preliminary test architecture concept. Step 11

3.2.1.3.2 Outputs to DFT Processes

oDa. Preliminary fault model definitions Step 5
oDb. An approved, consolidated test requirements specification. Step 7
oDc. Preliminary version of top level test architecture, TA0, and test

strategy diagram, TSD0, including allocation of test requirements to
BIST, test equipment, and manual procedures for all three phases of
testing.

Step 10

oDd. Testability assessment(s) of subsystem partitions. Step 10

3.2.1.4 Handling of COTS

a. The impact of COTS on this step is to place practical limitations on the test requirements and
subsequent test strategies. For example, it does not make sense today to specify a
requirement that can only be achieved with 100% boundary-scan, if a large part of the
system will use COTS boards that do not come in boundary-scan versions.

b. The development of the fault model in this step is also affected by the presence of COTS,
particularly if the COTS element is a "black box" in terms of its structural composition.
Several options exist for handling fault models for black box COTS elements:

1. Establish a structural fault model, in which the "node" is the lowest level input or output for
which a description exists. This level will usually be at the inputs and outputs of blocks
at the block diagram level or could be simply the inputs or outputs of the package itself
(such as a chip) or board.

2. Attempt to define a "functional fault model." This is a fault model based on the function,
rather than the structure of the item; and it describes the erroneous functional behavior that
would occur in the presence of a fault. While this approach will work for simple functions,
it is not likely to be practical for large VLSI based components or boards.

c. The presence of COTS may throttle attempts to reach a singular life cycle test strategy. One
reason is that black box COTS elements are usually tested functionally (for defect detection
and isolation), while most of the rest of the design that is not black box oriented is usually
tested using a great deal of structural testing and some functional testing. An analysis of the
degree of anticipated COTS usage and the extent to which current COTS incorporates test
features, would tend to allow an early, preliminary assessment of what plateau of test
architectures might be possible. For example, several "plateaus" can be envisioned:

1. All COTS with no testability features. This would drive the project toward the traditional
test philosophy, which may not even be possible, depending on the complexity and
packaging of the COTS circuitry.

2. COTS with some ad hoc test features, but no BIST. This may at least allow the boards
to be tested with traditional in-circuit or functional testers, again depending on the
complexity and packaging of the COTS circuitry.

3. COTS with boundary-scan features but no BIST. This plateau "opens the gate" to
possible singular test strategies built around PC-based testing.

4. COTS with BIST and boundary-scan. This plateau definitely "opens the gate" to
singular test strategies built around PC-based testing and BIST.

Both of the latter two plateaus are in the future at this time. In the meantime, preference (from a
DFT standpoint) should always be given to COTS items in the latter two categories.

3.2.1.5 Risk Management/Mini-Spirals

This step could stimulate a mini-spiral (See RASSP methodology document.) to explore such

things as a quickly emerging test technology that may become available in the project timeframe
(e.g., board level BIST insertion). For example, if there are any major breakthroughs in
functionally oriented fault modeling or testing for black boxes, that would warrant a mini-spiral,
since the black box represents a test risk.

Another application of the mini-spiral could be to assess the consistency, validity, and
realizability of a questionable requirement(s).

3.2.1.6 Interface to Reuse Library

This step could spawn entries in the reuse library in the form of fault models, test requirements
specifications and consolidated test requirements specifications.

3.2.1.7 Interface to the Overall RASSP Methodology and Tools

Interface will be to PRICE, RDD100, and RTM.

3.2.2 Architecture Definition - Functional Design Step

The functional design step provides a more detailed analysis of the processing requirements
(including BIST), resulting in initial sizing estimates, detailed data and control flow graphs for all
required processing modes to drive the hardware/software codesign, and the criteria for
architecture selection. The control flow graphs provide the overall signal processor control, such
as mode switching (referred to as the command program). Functional simulators support the
execution of both the data and control flow graphs. For complex control applications, these
simulations can be coupled to ensure that all control is properly executed and results in the proper
graph actions (e.g., mode transitions). Figure 3-12 shows the DFT steps which occur during the
Functional Definition Step.

VP0
Testbench

Architecture
Selection
Criteria &

Matrix

(1&2)
Check TMAT,
& Reuse Lib

(Rb)
Detailed
DFG's &
CFG's

(Rh)
Reuse
Library

(Da)
TMAT

(3)
 Detailed analysis

 of test req'ts
 implications.

 Refine
 fault model(s) .

(4)
Refine

System TSD
& Testability
Architecture

(Db)
Approved,

Consolidated
Test

Requirements

Testability
Architecture
Description

(5)
BIST HW/

SW
Partition

&

(c)
Partition

Testability
Assessment

(Rh)
Reuse
Library

Reuse?

YES

(6)
On-line

BIST SW
DFG & CFG

(7)
Test Related

Selection
Criteria

(8)
Incorporate
BIST/DFT
verifcation

into TB Plan

Updated
VP0 TB(a)

Test req't
impact

assessment

(b) Refined
TA0 & TSD0

&
Meet

Requirements?

NO

YES

Identify
reuse

candidates

(Dc) Preliminary
System TSD
& Testability
Architecture

On-line
BIST SW

DFG & CFG

On-line
BIST SW

DFG & CFG

Figure 3-12. DFT steps in functional definition flow diagram.

3.2.2.1 Inputs

3.2.2.1.1 Inputs from Overall RASSP Processes

iRa. Reuse library. Step 2
iRb. In-process detailed data and control flow graphs Step 6
iRc. Architecture selection criteria matrix Step 7
iRd. Test bench plans and definitions from System Definition process. Step 8

3.2.2.1 .2 Inputs from DFT Processes

iDa. The TMAT Table Step 1
iDb. An approved, consolidated test requirements specification. Step 3
iDc. Preliminary, top level test architecture, TA0, and test strategy, TSD0. Step 4
iDd. Testability assessment(s) of subsystem partitions. Step 4

3.2.2.2 Process

The following steps are followed:

1. Using iDa, access the Metric/Tool Application Table (TMAT) (see Table A-1) and select
metrics/tool pairs for use during this step.

2. Using iRa., check the reuse library for candidate reuse elements for this step (i.e.,
requirements impact analyses, fault models, BIST DFG’s, CFG’s and architecture-
independent primitives, test-related selection criteria, BIST/DFT verification testbenches).

3. Using iDb, perform a more detailed analysis of the test requirements and their implications and
refine the underlying fault model(s) accordingly. For example, begin to define the details of the
BIST modes of operation (power-on, on-line, off-line, etc.). Begin determination of the details
of the fault isolation capabilities, including assessment of the impact of ambiguity group size
requirements.

4. Based on the overall top level test architecture, TA0, and test strategy, TSD0,1 upon the
analysis in Step 3 of the consolidated test requirements specification and upon the increased
information developed under functional design represented as iRb, develop preliminary test
strategy and architecture, TSD1 and TA1, respectively (see Figure 3-4, Hierarchy of Test
Strategy Diagrams).

5. Begin first pass at DFT/BIST hardware and software partitioning.

6. Begin development of on-line BIST software, by reflecting it into the detailed DFGs and
CFGs, iRb.

7. Using iRc, insert test related criteria (including DFT and BIST) into the architecture selection
criteria matrix.

8. Using iRd, incorporate BIST/DFT verification into test bench plans and descriptions.

3.2.2.3 Outputs

3.2.2.3.1 Outputs to the Overall RASSP Processes

oRa. Updated DFG’s and CFG’s with on-line BIST SW functions
captured.

Step 6

oRb. Test related criteria for architecture selection criteria matrix. Step 7
oRc. BIST/DFT verification approach for test bench plans and

descriptions.
Step 8

3.2.2.3.2 Outputs to DFT Processes

oDa. Preliminary assessment of Test Requirement implications. Step 3
oDb. Refined Fault Models Step 3
oDc. Test mode and fault isolation specifications. Step 3
oDd. Preliminary architecture-level test strategy diagram, TSD1, and

testability architecture, TA1.
Step 4

oDe. First pass at BIST/DFT hardware/software partitioning. Step 5
oDf On-line BIST SW functions captured into DFG’s and CFG’s. Step 6

3.2.2.4 Handling of COTS

At this step, the general potential areas of COTS may start to be identifiable. Development is
started on the "lead, follow, or get out of the way" strategy for COTS at the testability
architecture level. This COTS strategy is discussed in more detail in the detailed design phase.

1 Including allocation of test requirements to BIST, test equipment, and manual procedures for all three
phases of testing.

If COTS components such as boards or subsystems will be used and SW BIST is the primary
means for test, then the DFG’s for SW BIST of these components should be captured, simulated
and fault graded to the maximum extent practicable.

3.2.2.5 Risk Management/Mini-Spirals

As before, this step could stimulate a mini-spiral (See RASSP methodology document.) to explore
such things as a quickly emerging test or BIST/DFT technology that may become available in the
project timeframe (e.g., front end BIST insertion).

3.2.2.6 Interface to Reuse Library

Any of the outputs of the steps in this stage could provide candidates for encapsulation in the
reuse library.

3.2.2.7 Interface to RASSP Tools

(TBD)

3.2.3 Architecture Definition - Architecture Selection Step

During architecture selection, various candidate architectures are evaluated through iterative
performance simulation and optimized to appropriate levels of detail. A trade-off analysis based
on the established selection criteria results in the specification of the detailed architecture, and
software partitioning and mapping. As part of the trade-off analysis, information is used from the
required cross disciplines such as reliability and testability (either manually or through design
advisors) to populate the trade-off matrix. Figure 3-13 shows the DFT steps which occur during
the Architecture Selection Step.

VP1
Testbench

Architecture
Selection
Criteria &

Matrix

(1&2)
Check TMAT,
& Reuse Lib

Refined
Fault

models

(Rh)
Reuse
Library

(Da)
TMAT

(3)
Refine
Fault

Models

(4)
Develop

TSD1 & TA1

Refined
Fault Models

Testability
Architecture
Description

(5)
Capture

TSD1 & TA1
into VP1

&

(6)
Incorporate
test criteria

into processor
& component

selection

(Rh)
Reuse
Library

Reuse?

(7)
Develop

test plans
& procedures

(8)
Refine

BIST SW
CP & DFG

Updated
Tradeoff

matrix

Selected
Test

Architecture

Updated
VP1 TB

Top Level
test plans

& procedures

Furhter
developed
BIST SW
CP & DFG

Completed
TSD1 & TA1

&
Identify
reuse

candidates

(Dc) Preliminary
TSD1 & TA1

YES

Figure 3-13. DFT steps in architecture selection flow diagram.

This portion of the process is heavily dependent on the reuse of architectural (hardware and
software) components to provide significant time-to-market improvements. In addition, during
architecture selection, all software not represented by the DFG’s is designed. Based on the
requirements, the non-DFG software may include BIST2, downloading data and code, and
diagnostics. The virtual prototype, VP1, produced during architecture selection is not a full
system prototype, since function and performance are simulated independently and may or may
not be coupled with the overall control mechanism. Several architectures may be selected for
verification during the following step (i.e., primary candidate and risk reduction alternatives).

2 At the time of this writing, the feasibility of capturing the overall system level BIST function with DFGs and
previously developed primitives is being investigated. The goal is to develop BIST functions with the
same tools/methodology as the other functions.

Virtual Prototypes (VPx) are specified at the highest level of abstraction (lowest level of detail) of
any model in the prototype. The highest level of abstraction of any model in VP1 has
performance modeled at least at the Network Architecture Level and functionality modeled at least
at the Data Flow Graph level. High risk elements of a design will typically have been developed
to a higher level of detail than this specified level. For instance, a high risk ASIC design mini-
spiral might have been spun-off to verify that the ASIC’s specifications are realistic. Before a
VP1 level architecture can be approved, positive feedback from these activities must be
received. The amount of detail required depends on what is agreed upon by the IPDT as an
acceptable level of risk. For the ASIC design in the example, it could be a behavioral model of
the ASIC along with estimates of its size and I/O. However, in another case, a gate level model
of a critical path may be developed. For a completely COTS solution, full functional models or
even actual hardware may be available, and no performance models needed. In this case, level
of detail for VP1 will be much higher than in the custom-part example.

By the end of Architecture Selection (VP1), all large components (processors and custom
processors) should be chosen, function defined, timing and sizing estimated. All other logic should
reside in behavioral VHDL blocks which correspond approximately to boards or blocks of logic on
a board. Communication between the boards should be defined along with approximate
mechanical size and pin count off the board. Function (at the level of DFGs) and performance (at
the level of performance models) are simulated independently and may or may not be coupled
with the overall control mechanism.

The Architecture Selection level test strategy diagram, TSD1, and testability architecture, TA1, are
developed concurrently with VP1 for each candidate architecture.

3.2.3.1 Inputs

3.2.3.1.1 Inputs from Overall RASSP Processes

iRa. Reuse library Step 2
iRb. Architecture component test bench definitions. Step 5
iRc. Executable specification for VP1 Step 5

3.2.3.1.2 Inputs from DFT Processes

iDa. TMAT table Step 1
iDb. Refined fault model definitions Step 3
iDc. Preliminary architecture-level test strategy diagram, TSD1, and test

architecture, TA1.
Step 4

iDd. First pass at BIST/DFT hardware/software partitioning. Step 4
iDe. Test mode and fault isolation specifications. Step 4-7
iDf. Preliminary assessment of Test Requirements implications Step 5
iDg. BIST/DFT verification approach for test bench plans and

descriptions.
Step 5

iDh. Test related criteria for architecture selection criteria matrix. Step 6

3.2.3.2 Process

The following steps are followed:

1. Using iDa, access the Metric/Tool Application Table (TMAT) (see Table A-1) and select
metrics/tool pairs for use during this step.

2. Using iRa, check the reuse library for candidate reuse elements for this step.

3. Using iDb, refine the "fault" models for each of the three phases of testing - design,
manufacturing and field, as input to the test strategy development. These fault model
definitions become the basis for establishing the anomaly populations in the TSDs.

4. Using iDc (TSD1 and TA1), the top level Test Strategy Diagram and Testability Architecture,
including captured test requirements, develop the Architecture-selection level test strategy,
TSD1 (oDc), and testability architecture, TA1 (oDc), for each candidate functional architecture
being considered (see Figure 3-4, Hierarchy of TSD’s). The test strategy, TSD1 (oDc), is
developed using the TSD method discussed earlier and illustrated in Figures 3-14 through
3-17 and previous Figures 3-3 through 3-5 and 3-11. Figure 3-14 shows the concept of a
TSD-based analysis for board testing (debugging) in the design test phase. Figures 3-15
and 3-16 show TSD-based analyses for the manufacturing test phase using respectively,
test time and cost (Figure 3-15) and defect or quality levels (Figure 3-16). Figure 3-17 shows
a TSD-based analysis used for BIST requirements analysis.

Concurrently, perform the following substeps:

a. Determine the test bus and controller hierarchy for each test architecture.
b. Perform hardware/software tradeoff analysis for each test architecture.
c. Using the first pass allocation in the Functional Design stage, refine allocation of BIST/DFT

functions to hardware and software.
d. Prior to simulation, predict inherent testability of each architecture under consideration,

using controllability and observability analysis (e.g., topological dependency modeling).
Include ambiguity group analysis in this effort. Document results in the top level and
architectural level, prediction TSD’s within TSD1 (oDc) and in the RASSP architecture
tradeoff matrix (oRb).

g. Generate preliminary prediction TSD’s for each board type.
f. Develop preliminary requirements for MCM and chip components and document in TSD1.

KEY

% Cov. - % Coverage

NOTES

* This could be a statistical estimate based on previous model year
•• This could include test time and cost factors

Total Design Flaw Population *

% Cov.
**

DETECTION

ISOLATION

CORRECTION

SIMULATION BOUNDARY-
SCAN BASED
EMULATOR
AND LOGIC
ANALYZER
FUNCTIONS

FUNCTIONAL
TEST

ENVIRON-
MENTAL STRESS

SCREENING
(DESIGN PHASE)

SYSTEM
TEST

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

% Cov.
**

JSE 27

Figure 3-14. Example of a board level test strategy diagram for design phase test strategy
development and tradeoff analysis.

KEY

% Cov. - % Coverage TT - Test Time TC - Test Cost

Total Manufacturing Fault Population

% Cov
TT
TC.

DETECTION

ISOLATION

CORRECTION

BARE
BOARD
TEST

PC-BASED
BOUNDARY-
SCAN TEST

BED-OF-
NAILS
TEST

MANUAL
PROCEDURES

Total Time
Total Cost

OPTION A
— New Boundary-Scan Based Approach —

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

OPTION B
— Traditional Approach —

Total Manufacturing Fault Population

% Cov
TT
TC.

DETECTION

ISOLATION

CORRECTION

BARE
BOARD
TEST

SYSTEM
TEST

BED-OF-
NAILS
TEST

MANUAL
PROCEDURES

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

Total Time
Total Cost

% Cov
TT
TC.

% Cov
TT
TC.

% Cov
TT
TC.

JSE 28

Figure 3-15. Example of a test strategy diagram for board level production test strategy
development and tradeoffs.

KEY

% Cov. - % Coverage
W & B - Williams and Brown Defect Level Equation (or other DL model)

Pre-Tested & Packaged Die Yield

% Cov.
W & B

DETECTION

ISOLATION

CORRECTION

SYSTEM
MANUFACTURING

TEST

FIELD
TEST

BOARD
MANUFACTURING

TEST

CHIP
MANUFACTURING

TEST

…

Delivered System
Defect Level

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

% Cov.
W & B

% Cov.

% Cov.

% Cov.

… …

JSE 29

Figure 3-16. Example of a test strategy diagram for defect level/quality level analysis during
manufacturing.

KEY

% Cov. - % Coverage
A.E. - Allocation Equation, based on factors such as failure rate,
mission criticality, COTS versus Non-COTS, etc.

A.E.

A.E.

A.E.

SYSTEM REQUIREMENTS

BOARD N

…

BOARD REQUIREMENTS

CHIP REQUIREMENTS

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

BOARD 1

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

A.E.

A.E.

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

CHIP 1

A.E.

…

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

CHIP N

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

CHIP 1

…

Allocated Fault Population

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

% Cov. % Cov. % Cov.

DETECTION

ISOLATION

CORRECTION

ON-LINE
BIST (HW)

OFF-LINE
BIST (SW)

TEST
EQUIPMENT

CHIP N

JSE 30

Figure 3-17. Example of a test strategy diagram for BIST requirements allocation and tradeoff
analysis for the field test phase

5. Using iRc, reflect test architecture, TA1, into the executable specification for VP1. In the
system model portion, include DFT and BIST features where possible in the system
functionality data. Incorporate degradation factors in system timing and performance data to
accommodate any predicted impact of on-line BIST. Include DFT/BIST requirements in
physical constraint data. In the test bench portion, include proper stimulus and response data
to verify BIST/DFT functionality and where possible, to verify test requirements compliance
during VP1 simulations. Separate performance simulations should verify that functional
performance, degraded by any on-line BIST operations, still meets performance requirements.
Any behavioral level simulations should verify BIST/DFT hardware/software codesign
success. Back-annotations of the e-spec should be done, based on more detailed level
simulations at later points. Simulation results for compliance verification, if any at this point,
should be inserted into the top level Verification TSD within TSD1 (oDc) and in the RASSP
architecture tradeoff matrix (oRb).

6. During processor and component selection (MCAs, ASICs, FPGAs, COTS Interconnect
chips, etc.), ensure BIST and DFT are considered as criteria for selection, oRb, (e.g.,
boundary-scan, scan-based emulation capabilities, BIST, strong interrupt capability,
sufficient throughput to accommodate BIST functions, etc.). Processor selection in particular
will impact Testability Architecture and strategy, in the case that processors are used for
BIST/DFT functions (i.e., software BIST allocation).

7. Using iDc, develop top level test plans and procedures (oDe), based on the architecture level
TSD’s and Test Architectures being evaluated.

8. Continue with non-DFG BIST software development (oDf). Refine any DFG/CFG based
BIST software.

9. Select one test architecture for the selected functional architecture (oRc).

3.2.3.3 Outputs

3.2.3.3.1 Outputs to the Overall RASSP Processes

oRa. VP1 e-spec updated based on test architecture candidates. Step 5
oRb. DFT inputs to architecture tradeoff matrix Step 4-6
oRc. Processor selection results, including BIST/DFT considerations. Step 9

3.2.3.3.2 Outputs to DFT Processes

oDa. Refined fault model definitions. Step 3
oDb. TSD1, Architecture-level test strategy diagram, TSD1, and Test

Architecture, TA1, for each processor system architecture candidate.
Step 4, 5

oDc. Preliminary DFT/BIST hardware/software allocation Step 4, 5
oDd Architecture component test bench definitions. Step 5
oDe. Preliminary board level test plans and system acceptance test

procedures .
Step 7

oDf. Further developed non-DFG BIST software. Target- dependent
DFG/CFG on-line BIST software.

Step 8

3.2.3.4 Handling of COTS

At this step, the "lead, follow, or get out of the way" strategy for COTS at the testability
architecture level can be refined. This COTS strategy is discussed in more detail in the detailed
design phase.

Another major issue with COTS is the definition of the fault model. At a minimum, it should be
possible to define the fault model for COTS boards and devices at least at the I/O pin level. If
functional block diagrams are available for the COTS devices, the fault model may be able to be
extended down to the periphery of the individual blocks within the device, thus reducing the
reliance on "black box" functional test to the testing of the internal blocks within the device. Plans
should be initiated to establish how COTS will be handled in the fault simulation activities in the
Detailed Design stage.

3.2.3.5 Risk management/Mini-Spirals

As before, this step could stimulate a mini-spiral (See RASSP methodology document.) to explore
such things as a quickly emerging test or BIST/DFT technology that may become available in the
project timeframe (e.g., front end BIST insertion).

3.2.3.6 Interface to Reuse Library

Any of the outputs of the steps in this stage could provide candidates for encapsulation in the
reuse library.

3.2.3.7 Interface to RASSP Tools

(TBD)

3.2.4 Architecture Definition - Architecture Verification Step

Architecture verification is the process of hierarchically simulating both the functionality and
increased performance detail of a selected architecture candidate. Up to this point the overall
functionality has not been verified. An integrated, simulation-framework supports mixed-domain
simulation so that high-level performance and functional simulation can be coupled with ISA or
RTL VHDL simulators, hardware emulators or hardware testbeds. The goal is to validate
operation of all architectural entities and the interfaces between them before detailed design.
Software partitions are autocoded to produce software modules translated from the processor
independent library elements to optimized, processor specific implementations. Figure 3-18
shows the DFT steps which occur during the Architecture Verification step.

VP2
Testbench

(1&2)
Check TMAT,
& Reuse Lib

Completed
Fault Models

(Rh)
Reuse
Library

(Da)
TMAT

Refined
test plans&
procedures

(3)
Develop

TSD2 & TA2

Refined
BIST SW
CP & DFG

Testability
Architecture
Description

(4)
Capture

TSD2 & TA2
into VP2

&

(Rh)
Reuse
Library

Reuse?

(5)
Develop

test plans
& procedures

(6)
Refine

BIST SW
CP & DFG

Updated
VP2 TB

Refined
test plans&
procedures

Refined
BIST SW
CP & DFG

Completed
TSD2 & TA2

Review
Identify
reuse

candidates

TSD1 & TA1
YES

Figure 3-18. DFT steps in architecture verification flow diagram.

VP2 for the verified architecture is produced at the end of this step. All boards are broken down
into behavioral blocks representing MCMs, ASICs, FPGAs or relatively small logic blocks (i.e.,
glue logic and/or functions to be implemented in PLDs). This is where ASIC/FPGA trade-off
studies are done. Blocks representing small amounts of logic may remain unmapped until module
design if necessary. Such things as buffering would not be accounted for at this point although it
should be kept in mind for space considerations. Performance and functionality are simulated
together with the overall control mechanism. At this point, the highest level of abstraction allowed
is a full-behavioral model which incorporates function and timing. All code should be verified
during VP2 at least at the HLL level.

This step may be entered a number of times as part of architecture selection but is exited
successfully only when all architecture requirements have been achieved. Only one solution
(architecture) is output from this step for detailed design.

3.2.4.1 Inputs

3.2.4.1.1 Inputs from Overall RASSP Processes

iRa. Reuse library Step 2
iRb. In-Process VP2 e-spec Step 4
iRc. Processor selection results, including BIST/DFT considerations Step 3 and

4
iRd. Architecture Tradeoff Matrix Step 3 and

4

3.2.4.1.2 Inputs from DFT Processes

iDa. TMAT Table Step 1
iDb. Refined fault model definitions. Step 3
iDc. TSD1, Architecture-level test strategy diagram, TSD1, and Test

Architecture, TA1, for each processor system architecture candidate.
Step 3

iDd Architecture component test bench definitions. Step 4
iDe. Preliminary board level test plans and system acceptance test

procedures .
Step 5

iDf. Further developed non-DFG BIST software. Target- dependent
DFG/CFG on-line BIST software.

Step 6

iDg. Refined DFT/BIST hardware/software allocation Step 6

3.2.4.2 Process

The following steps are followed:

1. Using iDa, access the metric/tool Application Table (TMAT) (see Table A-1) and select
metrics/tool pairs for use during this step.

2. Using iRa, check the reuse library for candidate reuse elements for this step (i.e., fault models,
TSD’s, TA’s, testbenches, test plans and procedures, BIST SW CP, DFG, and primitives)

3. Using iDc (TSD1 and TA1), the top level Test Strategy Diagram, and Testability Architecture,

develop the Architecture Verification level test strategy, TSD2 (oDc), and testability
architecture, TA2 (oDc) (see Figure 3-4, Hierarchy of TSDs).

Concurrently, perform the following substeps:

a. Extend the test bus and controller hierarchy for each test architecture onto the
board/module level.

b. Using the preliminary allocation in the Architecture Selection stage, refine allocation of
BIST/DFT functions to hardware and software.

d. Prior to simulation, predict testability of each architecture under consideration, using
controllability and observability analysis (e.g., topological dependency modeling and
boundary scan access analysis). Include ambiguity group and testability analysis in this
effort. Document simulation and analysis results in the top level and architectural level,
preliminary verification TSD’s within TSD2 (oDb) and in the RASSP architecture tradeoff
matrix (oRb).

4. Reflect refined test architecture into the executable specification for VP2 (oRb). In the system
model portion, include DFT and BIST features where possible in the system functionality
data. Include BIST/DFT features (e.g., boundary-scan, BIST, etc.) in behavioral models for
all new designs. Any behavioral level simulations should verify BIST/DFT
hardware/software codesign success. Incorporate degradation factors in system timing and
performance data to accommodate any predicted on-line BIST impact. Include DFT/BIST
requirements in physical constraint data. In the test bench portion (oDc), include proper
stimulus and response data to verify BIST/DFT functionality and where possible, to validate

test requirements compliance during VP2 simulations. Concurrent performance simulations
should verify that functional performance, degraded by any on-line BIST operations, still
meets performance requirements. Back-annotations of the e-spec should be done, based on
more detailed level simulations at later points. Simulation results for compliance verification, if
any at this point, should be inserted into the Verification TSD, oDb, (and comparted to
previous data) and in the RASSP architecture tradeoff matrix (oRd). Modify test architecture
(oDb), if needed, based on e-spec simulation results.

5. Using iDe, refine test plans (ODd) and procedures (oDe), based on the Architecture
Verification level test strategy, TSD2, and testability architecture, TA2.

6. Using iDg, refine DFT/BIST hardware/software allocation (oDg). Using iDf, continue with non-
DFG and DFG-based BIST software development (oDf).

7. Conduct a review of the TSDs, test architectures, test plans, and test procedures for
flowdown to the Detailed Design stage.

3.2.4.3 Outputs

3.2.4.3.1 Outputs to the Overall RASSP Processes

oRa. Top level Test Architecture description and models embedded into
functional architecture.

Step 7

oRb. VP2 e-spec updated based on test architecture candidates. Step 4
oRc. Processor verification results, including BIST/DFT considerations Step 4
oRd. Updated Architecture Tradeoff Matrix Step 4

3.2.4.3.2 Outputs to DFT Processes

oDa. Completed fault model definitions. Step 3
oDb. Architecture-selection-level test strategy diagram, TSD2, and

Testability Architecture, TA2, for selected processor system
architecture.

Step 7

oDc. Architecture component test bench definitions. Step 4
oDd. Test plans for Board, MCMs, and special chips (i.e., ASICs,

FPGAs, bare dir or KGD).
Step 5

oDe. Test procedures for system acceptance and subsystem acceptance. Step 5
oDf. Equivalent DFG’s for on-line BIST software Step 6
oDg. Completed BIST/DFT hardware/software allocation Step 6

3.2.4.4 Handling of COTS

At this step, the "lead, follow, or get out of the way" strategy for COTS at the testability
architecture level can be refined further. An example of using this COTS strategy is shown
Figure 3-19. Controllability and observability analysis results can be used to determine what
solution(s) could be examined for sections anticipated to employ COTS. Possibilities could be
explored of absorbing some or all COTS functions (that are in non-testable devices) into ASICs
or FPGA type devices that incorporate at least boundary-scan, if not BIST. A refinement of the
COTS fault model may also take place in this stage.

KEY

BS - Boundary Scan
PRPG - Pseudo Random Pattern Generator
PSA - Parallel Signature Analyzer

BIST Mode

“Get-Out-of-the-Way”
Type COTS Solution

TI SN74BCT8244 Non-BS
Octal Registers

BIST Mode

Board BIST Analyzer

Board BIST Driver

Data
Path
Logic

Bus
Driver

High
Speed

Serial
Bus

Read Data
Buses

Write Data
Buses

32
 B

it
B

us

32
Bit

Reg

Bus
Drivers

32 32 32

OE

Addr Logic

WR RD

ADR
3232

32

Data
Path
Logic

Bus
Recvr

High
Speed

Serial
Bus

32
Bit

Reg

32 32 32

OE

Addr Logic

WR RD

ADR

3232

32

BOARD

JSE 32

P
R
P
G

“Follow” Type
COTS Solution

“Lead” Type
COTS Solution

Bus
Drivers

P
S
A

32

BIST Mode

TI SN74BCT8244 Non-BS
Octal Registers

BIST Mode

RAM

RAM

Figure 3-19. One aspect of dealing with COTS in DFT solutions.

3.2.4.5 Risk Management/Mini-Spirals

As before, this step could stimulate a mini-spiral (See RASSP methodology document.) to explore
such things as a quickly emerging test or BIST/DFT technology that may become available in the
project timeframe (e.g., front end BIST insertion).

3.2.4.6 Interface to Reuse Library

Any of the outputs of the steps in this stage could provide candidates for encapsulation in the
reuse library.

3.2.4.7 Interface to RASSP Tools

(TBD)

3.2.5 Detailed Design

The focus of detailed design is synthesis and implementation of the selected architecture in
hardware and software. From architecture verification, all boards have been broken down into
behavioral blocks representing MCMs, ASICs, FPGAs or relatively small logic blocks (i.e., glue
logic and/or functions to be implemented in PLDs). Major components such as processors,
interconnects, and sensor interfaces have been selected, specified, and verified at least by
simulation. Detailed design elaborates these designs into implementations by schematic capture,
synthesis, place, route, autocode, and primitive optimization activities.

Physical prototypes are designed, fabricated, tested, and integrated with software per the
program plan. The extent of the full system can range from a significant sub-assembly (i.e., a
MCM or more typically a set of boards where each board type is present) to the complete
system. Based upon these results the TSD’s are updated with preliminary measurement data on
fault population coverage. Design flaw data is collected based upon the extensive simulations of
VP3 and the system prototype results. Preliminary results are collected on BIST coverage of
manufacturing faults. If the program plan calls for a BIST demonstration, preliminary results are
collected on BIST coverage of field support faults.

3.2.5.1 Inputs

3.2.5.1.1 Inputs from Overall RASSP Processes

iRa. Reuse library Step 1, 5-7
iRb. VP2 Design description (detailed models, physical description) Step 1-4
iRc. VP2 Architecture and lower level component test benches Step 1,3
iRd. Physical prototype Step 4-7

3.2.5.1.1 Inputs from DFT Processes

iDa. TMAT Table Step 1a, 1f
iDb. Architecture-selection-level test strategy diagram, TSD2, and

Testability Architecture, TA2, for selected processor system
architecture.

Step 1b, 1c,
2, 4-7

iDc. Architecture component test bench definitions. Step 1e, 3
iDd. Test plans for Board, MCMs, and special chips (i.e., ASICs,

FPGAs, bare dir or KGD).
Step 1e, 2

iDe. Test procedures for system acceptance and subsystem acceptance. Step 1e, 2
iDf. Equivalent DFG’s for on-line BIST software Step 1d

3.2.5.2 Process

1. For each design entity, perform the generic process shown in Figure 3-20.

a. Using De, access the Test Metric/Tool Application Table (see Table A-1) and select
required pair(s).

b. Using Rd, capture the TSD and Test Architecture from the Architecture Definition stage.
Also capture test requirements flowed down from the previous stage. Refine the TSD and
test architecture at each level of packaging (check reuse library first).

c. Using Df, in the hardware design path, incorporate DFT and BIST, per the testability
architecture developed above (Check reuse). Incorporation should be done by
synthesis at the highest VHDL level possible. Currently, synthesis is available only at
the RTL level and only for chips. Ultimately, synthesis will involve higher packaging
levels and earlier (behavioral) levels. Where synthesis is unavailable, the features must

be inserted by designing them in concurrently with the functional design. VHDL models
should be back-annotated to accurately reflect the DFT and BIST features.

Access Metric/Tool Table and Select Pairs

Capture Previous TSD and TA
Capture Flowed Down Test Requirements

Refine TSD and TA from Captured Information
R

R

R

Generate
Test Vectors

Check
Compliance

Check
Compliance

Generate
SW DFT/BIST

Features
R

R

Integrate Hardware/Software

Update
P,V&M
TSD’s

Stop

DFT?
yes

 no

 no

yes yes

 no

R = Candidate Reuse Element

 no yes

Synthesize
Or Insert
DFT/BIST

Meets
Reqm’s

?

Enhance
BIST or
Vectors

Meets
Reqm’s

?

Enhance
Features

Check
Compliance

Correct

Meets
Reqm’s

?
JSE 31

Figure 3-20. Generic flow during detailed design.

Perform test domain analysis to stretch the reuse of all DFT/BIST structures. An example
of this concept is shown in Figure 3-21, using the same hypothetical board. The source of
BIST stimuli (8244) is analyzed to determine how much of the board (and eventually the
rest of the system) can be tested using the PRPG and the PSA elements in the 8244s. A
minimum of four domains (#1-4) are covered along with additional domains in the rest of the
system. By adding loopback capabilities, fault isolation is improved; and the number of
domains covered is doubled. Pseudorandom patterns emanate from the source 8244 and
responses through the loopback are compressed in the parallel signature analyzer in the

sink 8244. Test domain analysis can be used to stretch the limits of reuse across
packaging levels, as well as across the same package level.

BIST Mode

TI SN74BCT8244

BIST Mode

Data
Path
Logic

Bus
Driver

32
 B

it
B

us

32
Bit

Reg

Bus
Drivers

32 32 32

OE

Addr Logic

WR RD

ADR
3232

32

Data
Path
Logic

Bus
Recvr

High
Speed

Serial
Bus

32
Bit

Reg

32 32 32

OE

Addr Logic

WR RD

ADR

3232

32

BOARD

JSE 33

P
R
P
G

Bus
Drivers

P
S
A

BIST Mode

TI SN74BCT8244 Non-BS
Octal Registers

BIST Mode

Domain 1 Domain 2 Domain 3 Domain 4

Transmit Path

Receive Path

REST OF SYSTEM

LB 0

Non-BS
Octal Registers

Write Data
Buses

LB 1

RAM

LB 2 LB 3

High
Speed

Serial
Bus

LB 4

Read Data
Buses

RAM

Domain 8 Domain 7 Domain 6 Domain 5

Domain 9 …

Domain
N+M

…

Domain N

Domain
N+M-1

LB 2 LB 3…

Figure 3-21. An example of test domain analysis.

d. Using Df, in the software path, DFT and BIST features are incorporated for both facilitating
software testing, as well as for supporting hardware implemented DFT and BIST features
(check reuse).

e. In the hardware path, test generation takes place next (Check reuse). There are several
dimensions of test generation required in this step. Consider the life cycle phase of the
test and the associated fault model (design flaws versus manufacturing defects versus
field defects) and determine the nature of the patterns and their source:

1. Functional patterns used for verification of the functional (multiply-add, transfer data,
etc.) correctness of the design. These come from VHDL test bench simulation efforts.

2. Functional patterns used for verification of the test features (boundary-scan, internal
scan, etc.) of the design. These also come from VHDL test bench simulation efforts.3

3. Functional patterns used for design flaw testing or for at-speed, non-stuck-at fault
testing. These may be derived from the VHDL test bench simulation efforts (and
captured in WAVES).

4. Test patterns use for structurally oriented testing (e.g., gate level stuck-at faults)
which may require supplementary deterministic test pattern generation above the
functional patterns developed above to meet fault coverage requirements.

f. Compliance to requirements is checked by the appropriate metric/tool pair selected above
for both hardware and software paths. Insufficient testability will result in an iteration in
DFT enhancement.

g. Integration of hardware/software, although in reality a continuous process through
codesign, is shown as a separate block. The reason is that there is one more level of
compliance checking to be performed and that is the joint DFT/BIST effects and
capabilities of the final hardware/software codesigned elements.

h. Prediction and verification TSDs are updated with the newly tracked values from the
testbench simulation.

i. The process described above does not cover the actual application of the tests, which is
discussed below.

2. Using Db and Dd, refine and develop manufacturing and field test strategies, test architecture,
test plans and procedures.

3. Using Rb, build upon existing VHDL test benches and structurally-oriented, physical
prototype test-vectors to create production test-vector sets and field test-vector sets/TPSs.
This becomes particularly productive and effective if a singular test strategy as espoused
earlier was adopted.

4. Collect data on hardware and software design flaws and update the prediction and verification
values for the design flaw section of the TSDs.

5. Collect test and BIST performance data and update the prediction and verification TSDs.
Verify the effectiveness of DFT and BIST features encapsulated in the reuse library.
Generate preliminary measurement TSD’s as appropriate tests are conducted per the
program plan.

6. Collect data on the impact of test on design time and cost. Update attributes in the TSDs.
These data should be considered for encapsulation in the reuse library, to be used for default
test time and cost values in initial TSDs for similar model years and systems.

7. Using Rd, evaluate test requirements, test strategies, test architectures, and vectors; data
collection methods and forms; etc. for encapsulation in the reuse library.

3 Functional patterns used for verification of the test features can only be used effectively at the structural
VHDL model level, since the VHDL DID does not permit structure dependent signals to be modeled in
behavioral bodies.

3.2.5.3 Outputs

3.2.5.3.1 Outputs to the Overall RASSP Processes

oRa. Low level component test benches Step 1, 3
oRb. Verified functional hardware and software design, modified for

DFT/BIST
Step 1

3.2.5.3.2 Outputs to DFT Processes

oDa. Detailed, low level test requirements, test architecture and test
strategy.

Step 1b,2, 7

oDb. Compliance tracking data Step
1f,1h,4-6

oDc. Reuse elements Step 7
oDd Manufacturing and field test strategies, plans, procedures, test vector

sets
Step 2

oDe. Design flaw reports and statistics for TSD updates, manufacturing
use, etc.

Step 4

3.2.5.4 Handling of COTS

Give priority to COTS selection as described in the plateau discussion earlier. In addition, use
the "Lead, follow, or get out of the way approach" to dealing with COTS. This involves adding,
or using existing, DFT features to the design to deal with COTS. As illustrated in Figure 3-19,
COTS devices possessing BIST features, such as the TI SN74BCT8244 (having a PRPG and
PSA mode), are given a "lead" role, since they can lead a test process. COTS devices, such as
the four non-boundary-scannable octal flip-flops are given the "follow role," since, while they
cannot lead, they at least do not impede the BIST test flow originating at the boundary-scan
octals. Finally, the RAM chips, being very complex, and having no test features, coupled with an
inability to pass pseudorandom patterns through during RAM tests, must be relegated to the "get
out of the way" role which means bypassing them during BIST mode using a output tri-stating
approach.

Checking for compliance for COTS sections will require defining the fault model, such that the
coverage is measurable, using non-structural simulation models for the black box COTS elements
or by using simplified functional fault models.

3.2.5.5 Risk management/Mini-Spirals

As before, this step could stimulate a mini-spiral to explore such things as a quickly emerging test
or BIST/DFT technology that may become available in the project timeframe (e.g., board level
BIST insertion, black box solutions.

3.2.5.6 Interface to Reuse Library

Any of the intermediate or final outputs of this stage could provide inputs to the reuse library.

3.2.5.7 Interface to RASSP Methodology and Tools

a. VHDL Test Benches
b. PRICE life cycle cost tool

3.2.6 Manufacturing Stage

3.2.6.1 Inputs

3.2.6.1.1 Inputs from Overall RASSP Processes

Ra. Reuse library

3.2.6.1.2 Inputs from DFT Processes

Da. Detailed, low level test requirements, tester architecture, test plans, test procedures, and
test pattern sets (captured in WAVES) for testing integrated hardware and software at each
level of packaging

Db. Compliance tracking data
Dc. Reuse elements
Dd Manufacturing and field test strategies, plans, procedures, test vector sets
De. Design flaw reports and statistics for TSD updates, manufacturing use, etc.
Df. Manufacturing defect reports
Dg. Reports from ESS testing
Dh. Reports from acceptance testing
Di. External Test and BIST performance data at all levels of packaging
Dj. Field test impact (cost and time) data
Dk. TMAT Table
Dl. Manufacturing test time and cost data

3.2.6.2 Process

a. Using Dr, access the Test Metrics/Tool Application Table (see Table A-1) and select required
metric/tool pairs.

b. Using Da, set(s) of manufacturing test vectors, captured in WAVES, along with tester
architecture, test plans and test procedures, are used for manufacturing test, along with BIST,
at each level of packaging.

c. Using De, data are collected on latent hardware and software design flaws found in
manufacturing and used to update the measurement values for the design flaw section of the
TSDs.

d. Using Df, Dg, Dh, data are collected on manufacturing defects found and used to update the
measurement values for the manufacturing section of the TSDs.

e. RMA data, if any, are collected and used to update the reliability model for failure rate
weighting applications, and to measure compliance to the RMA requirements.

f. Using Di, test and BIST performance data are collected and used to update the verification
and measurement TSDs, and to validate (or invalidate) the effectiveness of DFT and BIST
features encapsulated in the reuse library.

g. Using Dl, impact data on manufacturing test time and cost are collected and used to update
those attributes in the TSDs and are considered for encapsulation in the reuse library, to be
used for default test time and cost values in initial TSDs for similar model years and systems.

h. Using Dg, feedback is provided on the value and effectiveness of the design phase ESS.
(Did it help or hurt?)

i. Using Da and Dd, , manufacturing test strategies, test architectures, and vectors, data
collection methods and forms, etc., are considered for encapsulation in the reuse library.

3.2.6.3 Outputs

3.2.6.3.1 Outputs to the Overall RASSP Processes

a. Updated reuse library

3.2.6.3.2 Outputs to DFT Processes

a. Updated verification and measurement TSDs
b. Design Flaw and Manufacturing Defect Data for TSD update and field use

3.2.6.4 Handling of COTS

Since the treatment of COTS in testing is a difficult problem when the COTS lacks testability
features, the data collection discussed above should be particularly accurate for the COTS
sections of the system, so that the method of handling COTS during the design phase can be
validated or invalidated.

3.2.6.5 Risk Management/Mini-Spirals

Not applicable.

3.2.6.6 Interface to Overall RASSP Methodology and Tools

a. Preamp database/STEP information models

3.2.7 Field Support Phase

3.2.7.1 Inputs

3.2.7.1.1 Inputs from Overall RASSP Processes

Ra. Reuse library

3.2.7.1.2 Inputs from DFT Processes

Da. Detailed, low level test requirements, tester architecture, test plans, test procedures, and
test pattern sets (captured in WAVES) for field testing of integrated hardware and software
at each level of packaging

Db. Compliance tracking data
Dc. Reuse elements
Dd. Field test strategies, plans, procedures, test vector sets
De. Design flaw reports and statistics for TSD updates, field use, etc.
Df. Latent manufacturing defect reports
Dg. Field defect reports
Dh. External Test and BIST performance data at all levels of packaging
Di. Field test impact (cost and time) data
Dj. TMAT Table

3.2.7.2 Process

a. Using Dj, access the Test Metrics/Tool Application Table (see Table A-1) and select required
metric/tool pairs.

b. Using Da, set(s) of field test vectors, captured in WAVES, along with tester architecture, test
plans and test procedures, are used for field test, along with BIST, at each level of packaging.

c. Using De, data are collected on latent hardware and software design flaws found in
manufacturing and used to update the measurement values for the design flaw section of the
TSDs.

d. Using Df, data are collected on latent manufacturing defects found and used to update the
measurement values for the manufacturing section of the TSDs.

e. Using Dg, data are collected on field defects found and used to update the measurement
values for the field section of the TSDs.

e. RMA data, if any, are collected and used to update the reliability model for failure rate
weighting applications, and to measure compliance to the RMA requirements.

f. Using Dh, test and BIST performance data are collected and used to update the verification
and measurement TSDs, and to validate (or invalidate) the effectiveness of DFT and BIST
features encapsulated in the reuse library.

g. Using Di, impact data on field test time and cost are collected and used to update those
attributes in the TSDs and are considered for encapsulation in the reuse library, to be used for
default test time and cost values in initial TSDs for similar model years and systems.

h. Using Dh and Di, feedback is provided on the value and effectiveness of the design phase
ESS. (Did it help or hurt?)

i. Using Ra, , manufacturing test strategies, test architectures, and vectors, data collection
methods and forms, etc., are considered for encapsulation in the reuse library.

3.2.7.3 Outputs

3.2.7.3.1 Outputs to the Overall RASSP Processes

a. Updated reuse library

3.2.7.3.2 Outputs to DFT Processes

a. Updated verification and measurement TSDs
b. Design Flaw, Manufacturing Defect, and Field Defect Data

3.2.7.4 Handling of COTS

Since the treatment of COTS in testing is a difficult problem when the COTS lacks testability
features, the data collection discussed above should be particularly accurate for the COTS
sections of the system, so that the method of handling COTS during the design phase can be
validated or invalidated.

3.2.7.5 Risk Management/Mini-Spirals

Not applicable.

3.2.7.6 Interface to Overall RASSP Methodology and Tools

a. Reliability, maintainability, and availability modeling tools
b. Maintenance and logistics analysis tools
c. PRICE life cycle cost tool

3.3 Example of Application of the DFT Methodology

(TBD)

Figures 3-22a and -b show the hypothetical processing board and element. The board shown in
Figure 3-22a could be packaged for commercial applications on a 6U VME board. Note, the
architecture allows a variable number of nodes, memory array size and even memory types.
Depending upon PE type, memory array size and number of PE's per node a family of multichip
assemblies could be defined to accommodate various cost, size and weight tradeoffs. The
processing element shown in Figure 3-22b could be implemented as a single chip, multichip
assembly and/or a single chip plus memory.

3.4 Support for Upgradeability and Extensibility

Since the DFT Methodology is hierarchical, and its methods, such as the Test Strategy Diagrams
and the test domain analysis, are independent of tools, test techniques, packaging approach,
etc., the Methodology is very upgradeable and extensible.

3.5 Integration of DFT into RASSP Enterprise System

The RASSP program will deliver an integrated system called the RASSP system, which
integrates the CAD tools used in the RASSP design process under a framework referred to as the
enterprise framework. An enterprise framework provides the facilities and services necessary to
integrate the automated processes of an enterprise.

In the RASSP system the enterprise framework provides support for work flow management,
design data management, library management, computer-supported collaborative work and
remote tool access. The work flow management subsystem of the RASSP enterprise system
enables a RASSP system administrator to model and enforce a particular design methodology for
a project. The data management subsystem of the enterprise framework provides facilities for
configuration managing, and controlling access to design data files that may reside at various sites
in a computer network. Library management in the RASSP system involves the release,
cataloging, and searching of reusable design components.

Integration of DFT within the Enterprise System involves:

a. Capturing DFT process steps within the work flows and activity definitions.
b. Encapsulating DFT tools within the Enterprise Integration Framework.
c. Defining, selecting, developing (if required) and integrating initial items for the DFT reuse

library elements.
d. Defining (and/or selecting), developing and integrating templates and standards for test

related product data information for documentation and manufacturing release.

Each of these activities are described in the sections below.

3.5.1 Work Flow and Activity Definitions

Work flows are captured in IDEF-3X format. Each process step must have defined:

- Inputs (requirements, outputs of previous steps)
- Outputs (specifications for downstream steps, design items, results, candidate reuse library

items)
- Controls (guidelines, reuse libraries)
- The state Mechanism (responsible individuals, tools)

The activity which takes place in each step is documented in Section 3 above and in the updated
activity definitions which represent an instantiation of the more general steps in this document
(i.e., specific tools selected as appropriate from the RASSP Design Environment).

P
ro

ce
ss

in
g

 N
o

d
e

1-
4

P
E

s
+

 M
em

or
y

40

64
D

+
32

A

S
ca

la
b

le
M

em
o

ry
A

rr
ay

(S
R

A
M

 o
r

D
R

A
M

)
1M

B
-1

6M
B

64
D

+
32

A

P
ro

ce
ss

in
g

C

lu
st

er

P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I

6

PN Local Bus

PE Memory Bus

N
IF

N
od

e
I/F

C

hi
p

T
D

O

T
D

I

N
R

C
N

et
w

or
k

R
ou

te
r

C
hi

p

T
D

O

T
D

I

40

T
o

ot
he

r
P

ro
ce

ss
in

g
C

lu
st

er
s

an
d/

or
 e

xt
er

na
l I

/F
's

(s

en
so

rs
, d

at
a

pr
oc

es
so

rs
, c

on
tr

ol
 p

ro
ce

ss
or

s)

P
ro

ce
ss

in
g

 N
o

d
e

1-
4

P
E

s
+

 M
em

or
y

64
D

+
32

A

P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I P
E

T
D

O

T
D

I

6

PN Local Bus

PE Memory Bus

40

S
ca

la
b

le
M

em
o

ry
A

rr
ay

(S
R

A
M

 o
r

D
R

A
M

)
1M

B
-1

6M
B

64
D

+
32

A

N
IF

N
od

e
I/F

C

hi
p

T
D

O

T
D

I

JS
E

 1
8

F
ig

u
re

 3
-2

2
a
.
 L

o
ck

h
e
e
d
 M

a
rt

in
 A

T
L
 e

xa
m

p
le

 p
ro

ce
ss

o
r

b
o
a
rd

.

Sequence
and Control

Zero Wait State, Local Memory Array (256KB - 1 MB), Int or Ext

Data Bus

4 JTAG

PN
Local
Bus

Control Bus

Processing Element (PE)
Examples:
ADSP 21060
TI 320C40 w/ ext mem & NIF chip
TI 320C 80 w/ ext mem & NIF chip
FPASP5 PE

PE
Memory

Bus

PE I/O DSP Core Registers TAP
Controller

JSE 18A

Figure 3-22b. Lockheed Martin ATL example processing element.

3.5.2 Tool Encapsulation

DFT specific tools and their data types are encapsulated within the Enterprise Framework. This
integration allows the tools and data files for each process step (task) to be automatically
"opened" upon initiation of the step. This ensures the designer has the tools and data required to
perform the step and provides control and process monitoring for the project leader. Specifics of
Enterprise Framework Integration are documented in "Enterprise Integration Framework System
Requirements Specification" (9/94) and "Integration Procedures: Enterprise" (7/94).

3.5.3 DFT Reuse Libraries and Test Strategy Diagrams

Figure 3-23 shows the data flow diagram of the RASSP library management system, henceforth
referred to as the RASSP Reuse Data Manager (RRDM). The RRDM stores descriptive data
about all the reusable components released by the CAD tools. The user of a CAD tool invokes
the RRDM from the CAD tool, and locates a reusable component by running a query on the
descriptive data stored about the reusable components. The user may then view the reusable
component using a standard viewer or a viewer specific to the tool that created the reusable
component, and import the component into a design object.

The reusable components are stored in the format native to the tool that created it, and possibly
in standard interchange formats (VHDL, ADA, EDIF, etc.). The design data about the reusable
component is stored within the environment of the tool itself, while the descriptive data of the
component is stored within the RRDM. The RASSP Enterprise Product Data Manager (EPDM)
[Intergraph, 1994] manages and controls the access to the design data files of the reusable
components. The descriptive data of the reusable components are modeled using the classes of
an object-oriented class hierarchy, as shown in Figure 3-24.

One of the key ways in which the DFT Methodology contributes to the achievement of the
RASSP goals is through the enforcement of reuse of DFT in four different dimensions. As
described in Section 3.1.3.2 and pictured in Figure 3-2, the four dimensions of reuse are as
follows:

RASSP
Reuse
Data

Manager

Metadata
Repository

Queries File
Handle

CAD
Tool 1

Design
Engineer

Released
Reusable

Component

File
Info

File
Handle

Reuse Repository 1

Queries
Metadata

Query
Res.

Metadata

Metadata

Queries

Figure 3-23. RASSP reuse meta data flow diagram.

Signal Processor

Requirements
Data

Design
Data

Systems
Definition

Architecture

Thermal

Mechanical

Layout
Hardware

Schematics

VHDLNetlists

Cost
Data

Test
Data

Manufacturing
Requirements
Planning Data

Results

Reqs Test
Plans

Test
Sets

Simulation
Data

Configuration
Data

Problem
Report

Change
Proposal

Change
Notice

Waiver

Software

StructuralBehavioral
Figure 3-24. An example of authorization object hierarchy.

a. Across the life cycle phases within a given model year.
b. Across the packaging hierarchy within a given model year.
c. Across a single packaging level within a given model year.
d. As new model years unfold.

Not shown, but of key importance to design enterprise organizations is reuse across different
product lines (which is similar to (d), as new model years unfold, for the purposes of the DFT
methodology).

Reuse is used within the DFT methodology to provide the inputs of some steps in the process
(rather than perform the step from scratch), and outputs of each process step become candidates
for encapsulation in the reuse library for future model years or systems. Test related reuse items
include, for example, test requirements; test strategies; DFT/BIST techniques for certain logic
structures; testable chips, MCMs, etc.; BIST software modules; and test vector sets for certain
library elements.

The use of the term reuse and reuse libraries must be clarified to understand how reuse in the
DFT methodology relates to reuse within the Enterprise system (and RRDM).

Reuse - The process of utilizing selected elements that are outputs from any process step from
earlier stages of the life cycle of a system, from other levels of the system hierarchy, from
previous model years or from previous systems. Examples of re-use elements include
requirements, application graphs or sub-graphs, design entities (i.e., VHDL modules), test
strategies, BIST software, test vectors, techniques, documentation, etc.

Reuse Library - A set of encapsulated re-use elements plus documentation organized and/or
cataloged for ease of selection and insertion. The reuse library must have a process to be
executed by an organization in order to add reuse elements to the library systems. This process
is to certify that things are worthy of being added to the reuse library and also to build the proper
references in the reuse library system so that potential users of the reuse element are able to
locate it (search based on attributes/characteristics, etc.).

Note that reuse is a process that can be controlled or not controlled. Under RASSP, entry of
reuse elements into libraries is controlled via a structured process (see Figure 3-25) (reference:
Kalathil, "Library Management Model for the RASSP System", 10/94). Libraries are needed for
reuse across model years and product lines. DFT reuse library elements are managed within the
enterprise system by RRDM. But the library paradigm as implemented in RRDM does not
support the reuse proposed by the DFT methodology for:

a. Reuse across the life cycle phases within a given model year.
b. Reuse across the packaging hierarchy within a given model year.
c. Reuse across a single packaging level within a given model year.

Control and verification is required for these reuse elements just as it is required for library
elements. This control and verification is implemented by the Test Strategy Diagrams described
in this document. Details of the relationships between TSDs and RRDM are TBD. The baseline
concept is to encapsulate TSDs under the test DOCH sub-hierarchy therefore providing a
uniform view of reuse at the Enterprise level.

3.5.4 Test Related Product Data Management and Release

The DFT Methodology provides significant support for test related product data management.
The traditional problems associated with 'walls' between design, production and field support are
eliminated by unifying the test requirements for design verification, manufacturing and field test
and then managing the design-for- testability process with the Test Strategy Diagrams. This
provides a common framework for test requirements and solutions to be understood, traded off
and leveraged between different items and organizations. The suggested Testability Architecture
also provides significant support when followed. The use of BIST and hierarchical Test and
Maintenance buses and controllers provides the embedding of 'test knowledge' within the product
itself at the appropriate levels making diagnostics more effective, simpler to understand and easier
to resolve.

Key items to be resolved yet include specific standards for managing and representing test
information. Some of these standards are in the process of being developed under programs

such as PAP-E. One key standard which is endorsed and used within the methodology is IEEE
WAVES for the development and documentation of product test vectors.

Related Enterprise documents:

"PCA Manufacturing Interface: Requirements" (10/94)
"PC Manufacturing Interface Definition" (12/94)
"Parts Taxonomy for Manufacturing Library Information" 12/94

Instantiate
Class

HJS 056

Identify
Component

rejected*
reusable
component

Approve
Component

released*
reusable
component

Design Engineer
Component

Review Board

X

X

X

Design Engineer

Design Engineer

Design Engineer

Design Engineer Design Engineer

unclassified*
reusable
component

classified*
reusable
component,
previously
defined*
class

approved*
reusable
component

Determine
Class

Define
Class

Modify
Class

classified* reusable component, modified* class

classified* reusable component, newly defined* class

classified* reusable component, updated* meta data

classified* reusable component, rejected* meta data

Update
Meta Data

Approve
Meta Data

RRDM Administrator

classified*
reusable component,
approved*
meta data

classified*
reusable component,
default*
meta data

Figure 3-25. Work flow for reusable component definition.

3.6 Contribution of the DFT Methodology to RASSP Goals

The DFT Methodology contributes to achievement of the overall RASSP goals in two ways:

First, adoption of DFT practices such as being developed and practiced within industry results in
reduced cycle time, reduced cost, improved quality, predictable schedules (including integration
and test) or in other words improved time to market (or more importantly time to profit). For
example, companies have seen 4-5X reduction in board test time by using boundary scan based
testing. (For further information on the benefits of DFT see references in Table 3-1 below).

Table 3-1. A sample of the numerous articles/literature which documents the benefits of DFT.
Ambler, et al "The Economics of DFT", 3 part

series in Evaluation
Engineering, Sept., Oct., and
Nov. 1994.

Discusses barriers to DFT,
solutions for overcoming them
and gives case histories of the
impact of full scan and
boundary scan

Bennets "Progress in DFT: A personal
View", IEEE Design and Test of
Computers, Spring, 1994.

Defines Quif - Quality
Improvement Factor

Milo "Success with Boundary
Scan", Evaluation Engineering,
Feb. 1995.

Matsushita computed a 245%
return on investment

Schlumberger Technologies Boundary Scan - The Real
Benefits of Test

Free disk & electronic document
with case histories

Texas Instruments IEEE 1149.1 Testability - Primer Free Literature Book. Good
overview of structured DFT and
boundary scan

Secondly, the structured DFT methodology provides improvement of the DFT process itself
compared to current industry practice. This is achieved by the introduction of proven system
engineering practices such as the consolidation of test requirements and by leveraging the top
down development f the overall RASSP methodology to flow-down the test strategies and
architecture from the system to chip packaging levels and across life cycle phases of the product.

Specific contributions of the DFT Methodology to meeting the RASSP goals discussed in Section
2.2 is as follows:

a. Promotes concurrent engineering by providing a specific methodology for integrating test with
design activities. The methodology integrates tightly with the RASSP methodology and
leverages top down design, virtual prototyping and hardware/software co-design.

b. Enhances the probability of first pass success by providing specific steps to ensure
requirements are consistent, valid and realizable and by providing a structured process for
flowing requirements, strategies and architecture down to lower levels. The impact of errors
on schedule and cost are minimized by incorporation of integrated diagnostics which detect,
isolate and correct as appropriate and/or required.

c. Promotes a singular test strategy to reduce test development time and cost across the product
life cycle (example, PC based boundary-scan test for design and manufacturing and then
reuse of boundary scan test in the field via embedded boundary scan controllers).

d. Leverages reuse of any output of any DFT methodology step. Reuse for subsequent model
years and other products is supported via the RASSP Reuse Data Manager within the
RASSP System. In addition, a structured process and mechanism is provided for ensuring
reuse of test resources within a model year:

- Across the life cycle phases
- Across the packaging hierarchy
- Across a single packaging level

Control and verification is required for these reuse elements just as it is required for library
elements. This control and verification is implemented by the Test Strategy Diagrams
described in this document. The test strategy diagram method enforces reuse analysis and
knits all of the DFT Methodology steps together.

e. Provides a framework for codesign of DFT/BIST with functional hardware/software and
integrates tightly with the RASSP methodology. The framework facilitates automation and
high level synthesis.

4.0 SUMMARY

The RASSP DFT Methodology has been presented. It is viewed as an evolving methodology,
which can be upgraded and extended effectively. The DFT methodology presented in this
document bridges the gap between the overall design methodology and the specific work flows
and tools being implemented in the RASSP System. It is tightly integrated with the overall
methodology and the RASSP System. It directly supports the overall RASSP goal of 4X
reduction in cycle time and cost.

The definition of testing was expanded to encompass all phases of the life cycle and to include
as fundamental activities: detection, isolation and correction.

The methodology depends upon a commitment by the team (including management) to include
DFT to enhance product quality and to reduce time to profit.

Process steps are included to check requirements for consistency, validity and reliability.

Test requirements are consolidated for design verification, manufacturing acceptance and field
support to ensure a singular test solution.

Process steps are included to predict, verify and measure solutions to identify problems early
and/or to provide feedback for subsequent model years.

Test strategies and architecture are shared and flowed down to ensure consistency and to
minimize cost. A structured testability architecture based upon boundary scan and BIST is
promoted.

The RASSP System (i.e., RASSP Reuse Data Manager) is used to control and verify test reuse
library elements. Test Strategy Diagrams are used to control, enforce and verify reuse of test
resources across and within levels of the system hierarchy. The TSDs also provide a basis for
management (predict, verify and measure) of the requirements as they are flowed down.

5.0 GLOSSARY

5.1 Acronyms and Abbreviations

A/D Analog to Digital
ABBET A Broad Based Environment for Test
ASIC Application-Specific Integrated Circuit
ATE Automatic Test Equipment
ATPG Automatic Test Pattern Generation
ATS Automatic Test Sets

BFM Bus Functional Model
BIST Built-In-Self-Test
BIT Built-In-Test
BITE Built-In Test Equipment

CAD Computer-Aided Design
CAE Computer-Aided Engineering
CALS Computer-Aided Logistics Support
CAM Computer-Aided Manufacturing
CAPE Computer-Aided Parametric Estimating
CASE Computer-Aided Software Engineering
CAT Computer-Aided Test
CDMS Computer-Aided Design Data Management System
CDR Critical Design Review
CE Concurrent Engineering
CFG Control Flow Graph
CFI Computer-Aided Design Framework Initiative
CLMS Component and Library Management System
CND Cannot Duplicate
COTS Commercial Off The Shelf
CPU Central Processing Unit
CSCI Computer Software Configuration Items

D/I/C Detect/Isolate/Correct
DB Database
DEMVAL Demonstration/Validation
DFD Data Flow Diagram
DFG Data Flow Graph
DFT Design-For-Testability
DMA Direct Memory Access
DMM Design Methodology Manager
DoD Department of Defense
DOM CFI Standard for Design Object Management
DR CFI Standard for Design Representation
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DT&E Development Test and Evaluation

E-Specs Electronic Specifications (of electronic equipment)
EDA Electronic Design Automation
EDIF Electronic Data Interchange Format
EDM Enterprise Desktop Manager
EPDM Enterprise Product Data Management
EPI Engineering Process Improvement
ESS Environmental Stress Screening
EXPRESS-G Information Modeling Language - Graphical Representation

FMEA Failure Modes and Effects Analysis
FMECA Failure Modes and Effects Criticality Analysis
FPGA Field-Programmable Gate Array
FSED Full-Scale Engineering Development

GFE Government-Furnished Equipment

GFI Government-Furnished Information
GFLOPS Billion Floating-Point Operations per Second
GOTS Government Off the Shelf
GUI Graphical User Interface

HCI Human-Computer Interface
HDI High-Density Interconnect
HDL Hardware Description Language
HOL High-Order Language
HTML Hyper Text Markup Language
HW Hardware

I/NFM Intergraph Network File Manager
I/O Inputs/Outputs
IC Integrated Circuit
ICD Interface Control Document
IDDq Quiescent Source to Drain Current Test
IDEF3 Standard workflow graphical representation format
IEEE Institute of Electronics and Electrical Engineers
ILS Integrated Logistics Support
IPDT Integrated Product Development Team
IPPD Integrated Product/Process Development
IISA Instruction Set Architecture
ISO International Standards Organization
ITC CFI Standard for Intertool Communication

JCALS Joint Computer-Aided Logistics Support
JIAWG Joint Integrated Avionics Working Group
JTAG Joint Test Action Group (IEEE 1149)

LCC Life Cycle Cost
LMS Library Management System
LOCST LSSD On-chip Self Test
LRU Line Replaceable Unit
LSA Logistic Support Analysis

M-data Measurement Results Data
MANTECH Manufacturing Technology
MCM Multi-Chip Assemblies
MCM Multi-Chip Modules
MFLOPS Million Floating-Point Operations per Second
MMC Martin Marietta Corporation
MOE Measure of Effectiveness
MTBF Mean Time Between Failures

OO Object-Oriented
OS Operating System
OSI Open Systems Interconnect

P-data Prediction Results Data
PCA Printed Circuit Assembly
PCB Printed Circuit Board
PDCM Product Data Control Module
PDES Product Data Exchange using STEP
PDM Product Data Manager
PDR Preliminary Design Review
PDT Product Development Team
PE Processing Element
PGM/DFL Parallel Graph Method/Data Flow Language
PGSE Programming Graph Simulation Environment
PLD Programmable Logic Device
PMB Performance Measurement Baseline
PMO Program Management Office
PreAMP Pre-Competitive Advanced Manufacturing Process

PRICE Parametric Review of Information for Costing and Evaluation
PRR Production Readiness Review
PWA Printed Wiring Assembly

QA Quality Assurance

R&M Reliability and Maintainability
RAM/ILS Reliability, Availability, Maintainability/Integrated Logistics Support
RASSP Rapid Prototyping of Application-Specific Signal Processors
RDBMS Relational Database Management System
RDD-100 System Design CAD tool - Ascent Logic
RMWG RASSP Methodology Working Group
RTL Register Transfer Level
RTM Requirements Traceability Matrix
RTOK Retest OK

SDR System Design Review
SEM Standard Electronic Module
SEMP System Engineering Management Plan
SEMS System Engineering Management Schedule
SMT Surface Mount Technology
SOW Statement of Work
SP Signal Processor
SQL Standard Query Language
SRAM Static Random Access Memory
SRR System Requirements Review
SRS System Requirements Specification
STEP Standard for The Exchange of Product Data
STUMPS Self-Test Using MISR and Parallel SRSG
SW Software
SWAP Size, Weight, and Power

T&E Test and Evaluation
T&M Bus Test and Maintenance Bus
TAP Test Access Port
TBD To Be Determined
TBR To Be Resolved
TES CFI Standard for Tool Encapsulation
TPS Test Program Set
TRD Test Requirements Document
TSD Test Strategy Diagram

UUT Unit Under Test

V-data Verification Results Data
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuits
VLSI Very-Large-Scale Integration
VTEST Virtual Test

WAVES IEEE Standard for Waveform & Vector Exchange
WBS Work Breakdown Structure

5.2 Terms

Anomaly A departure from the required behavior or design to be detected,
isolated and corrected. Refers to the aggregate of physical faults
and design flaws. The hierarchy for physical anomalies is
defects, which cause failures, which are modeled as faults, and
may manifest themselves as errors in system operation. These
apply to both the manufacturing and field environments. They
(from defect on) may be solid, transient, or intermittent. The
design anomaly hierarchy is simply flaw and error.

Architectural Body A VHDL construct that is used to define the semantics of a design
entity. The semantics are defined in terms of mechanisms that
change the values of the signals attached to the output ports of
the design entity interface. There may be more than one
architecture body for a design entity. All architecture bodies for a
design entity share the same interface.

Architecture Selection Architecture selection is the heart of the RASSP HW/SW
codesign which utilizes a library based, DFG driven approach to
software development combined with an iterative performance
trade-off analysis to support rapid selection/analysis of candidate
architectures.

Architecture Verification Architecture verification is an iterative, hierarchical process whose
role is to verify the functionality and detailed performance of a
candidate architecture using a combination of testbed hardware,
simulator(s), and or emulator(s) prior to detailed hardware
implementation.

Back Annotation The process of assigning values to model attributes as the result
of the use of an external assessment tool; especially in assigning
precise timing values within higher abstract models from more
detailed lower level model simulations.

Behavioral Model An abstract, high-level VHDL description which expresses the
function and timing characteristics of the corresponding physical
unit independent of any particular implementation, especially
devoid of specific internal structure.

BIST (Built-In-Self-Test) The capability for an item to test itself, with minimal or no external
test equipment. BIST may be implemented in hardware or
software at any level of packaging. In this document, BIST is
considered to be synonymous with "BIT" and "self-test."
Furthermore, BIST is considered to encompass "diagnostics"
when it includes a fault isolation capability. Thus, BIST may
provide detection, isolation (diagnostics), and possibly correction
(with fault tolerance).

Bus Functional Model Used to define the operation of a component with respect to its
surrounding environment. The interface between the component
and its environment are modeled in detail, even though all of the
functions internal to the component do not have to be modeled,
particularly not at the same level of detail.

Co-Simulation The term "co-simulation" is used in two contexts: In the context of
hardware/software co-simulation, the term refers to the act of
simulating the execution of software on target hardware. This is
accomplished through a hardware simulation of the target
hardware interpreting software instructions. In the context of other
domains, besides HW/SW, the term refers to the act of
cooperatively running multiple distinct simulators concurrently with
inter-process communication between them. Each simulator is
simulating a distinct section or aspect of the target system. This
can apply to simulations within the same domain, such as Verilog
and Quicksim, or to simulators in divergent domains, such as
Spice, VHDL, and SPW.

Command Program (CP) The part of a software program which sequences and controls
data flow graphs (DFG’s).

Component A component is any logically separable hardware unit. They can
be combined to form a higher level component by being
interconnected. Thus components are directly related to the
nodes in the design hierarchy. The VHDL DID requires that
VHDL model components correspond to physical components.

Correction The process of removing the cause (maintenance) or effects (fault
tolerance) of a design flaw, manufacturing defect or physical fault.

Data Flow Graph (DFG) A directed graph that depicts information flow between signal-
processing primitive operations as "arcs" and the transforms or
operations that are applied on the data as "nodes".

Debugging A form of testing associated with the detection, isolation, and
correction of design flaws only.

Defect A physical breakdown of an interconnection, such as a foil trace,
connector, or cable, or a physical breakdown of a device, such as
a transistor, resistor, capacitor, etc.

Design Entity An entity interface together with an associated architecture body
defines a design entity. Different design entities may share the
same entity interface but employ different architecture bodies.

Design Flaw A mistake in the design or implementation of a circuit, assembly or
software routine which may result in an error in system operation.

Design-For-Testability The incorporation of a capability in any embodiment of any part of
a system that will facilitate the processes of detecting, isolating,
and correcting anomalies (design flaws, manufacturing defects,
and field defects

Detection The process of determining the presence of an anomaly, including
design flaws, manufacturing defects, and field defects.

Diagnosing The phase of testing associated with locating the source of the
anomaly.

Diagnostics The fault isolation capability of DFT and BIST. Diagnostics,
when implemented, is considered to be an integral part of DFT
and BIST and not a separate capability.

DSP (Digital Signal
Processor)

A processor system specialized for the computation of signal
processing algorithms. It usually consists of many programmable
processor elements interconnected via networks to each other
and to memory, sensors, displays and other external devices. It
is often distinguished from general purpose- or data- processors
in that it must operate in real-time, it often has a much higher data
input rate, and it usually must perform a higher percentage of
mathematical, often floating-point, operations.

Embodiment One form or instantiation of a system or its parts.

Error Incorrect behavior of a system, sub-assembly or logic circuit, due
to the effects of a design flaw or the propagation of a physical
fault through at least one level of gating.

Executable Specification
(ESpec)

A description of a component or system that can be executed in a
computer simulation to reflect the precise behavior of the intended
device. Currently, E-Specs may often be restricted to describing
only specific aspects of the component or system such as timing,
performance, or function.

Failure Incorrect transistor level behavior of a logic circuit, due to the
presence of a defect.

Fault Incorrect gate level behavior, due to the presence of a failure.

Fault Ambiguity Analysis An analysis of a system which identifies fault ambiguity groups
(groups of components or modules for which a fault cannot be
isolated within the group and, hence, repair would cause all items
to be replaced).

Functional Analysis The process of decomposing system requirements into functional
blocks which define the behavior of the system.

Functional Model A model of a hardware system that describes the response of the
system to stimuli in a way that is independent of any
implementation, and does not provide any information about the
timing characteristics of the system being modeled.

Hardware/Software
Codesign

The joint development and verification of both hardware and
software via simulation/emulation from the hardware/software
partitioning of functionality through design release. HW/SW
codesign should result in the development of a virtual prototype
(see definition for virtual prototype).

Instruction Set Architecture
(ISA)

Describes the externally visible state of a programmable
processor and the functions that the processor can perform. An
ISA level model of a processor will execute any machine program
for that processor and give the same results as the physical
machine, as long as all input stimuli are sent to the ISA level
model simulation on the same simulated clock cycle as they arrive
at the real processor.

Interoperable Two VHDL models of the same module are interoperable if one
model can be substituted for the other without introducing errors
into the system. Two VHDL models are also interoperable if they
can be connected together as components without introducing
errors into the system.

Isolation The process of determining the location of a design flaw,
manufacturing defect or field fault in a unit under test.

Leaf Module A design entity that has no associated structural architecture
body. Examples of possible leaf modules for a structural VHDL
model include power supplies, analog circuit blocks, and digital
logic gates.

Measurement The process of determining conformance to a requirement has
been met by measurements, tests and/or data collection.

Methodology The body of rules employed by a [engineering] discipline; a
particular procedure or set of procedures.

Performance Model A model which exhibits the measures of quality of a design that
relate to the timeliness of the system in reacting to stimuli.
Measures associated with performance include response time,
throughput, and utilization.

Prediction The process of determining conformance to a requirement has
been met by analysis and/or comparison with similar library
elements.

Primitive A software routine (or set of routines) that completes a function
within a data flow graph (DFG).

Process - See Methodology No distinction is made between methodology and process.

Processor Element A programmable device that is one of many that operate
cooperatively through a network in a processor system.

Prototype Library Element A hardware model or software primitive(application or OS
service) which is a candidate for inclusion in the reuse library. It
has not been fully tested, validated and documented. It is
however available for use in the early stages of HW/SW
codesign for high level architecture tradeoffs.

Register Transfer Level
(RTL) Model

Describes a system in terms of registers, combinational circuitry,
low level buses, and control circuits, usually implemented as finite
state machines.

Re-Use The process of utilizing selected elements that are outputs from
any process step from earlier stages of the life cycle of a system,
from other levels of the system hierarchy, from previous model
years or from previous systems. Examples of re-use elements
include requirements, application graphs or sub-graphs, design
entities (i.e., VHDL modules), test strategies, BIST software, test
vectors, techniques, documentation, etc.

Re-Use Library A set of encapsulated re-use elements plus documentation
organized and/or cataloged for ease of selection and insertion.

Structural Model Represents a system or component in terms of the
interconnection topology of the set of internal components.

Subsystem A major component of a system. For RASSP, the signal
processor is considered as a subsystem.

Synthesis The process of creating a representation of a system at a lower
level of abstraction from a higher level of abstraction. The
synthesized representation should have the same function as the
higher level representation.

System Depending upon one’s perspective a system could represent a
platform, sensor system, signal processor or processing board.
For RASSP, a system represents a sensor system such as a
radar, sonar or infrared sensor system.

System Configuration The system configuration consists of the major subsystems
which makeup the system. The major components of a RASSP
system include the exciter, transmitter, antenna, receiver, signal
processor and data processor.

System Definition The process of analyzing customer requirements, performing
functional analysis and system synthesis, and performing system
level tradeoffs to determine the functional and performance
specifications for each subsystem.

System Requirements
Analysis

The process of analyzing and interpreting system requirements
with the customer to refine the purpose and manner in which the
user will operate the system.

System Synthesis The process of performing top level system tradeoffs to allocate
the functional requirements into performance and physical
specifications for each subsystem.

Target Hardware The hardware that is the result of the design process, as
distinguished from hardware used in the design process.

Test And Maintenance
Buses

A hierarchy of standardized buses used for communication of test
information between test and maintenance controllers. Examples
are the IEEE 1149.1 and 1149.5 buses.

Test And Maintenance
Controllers

A hierarchy of functions used to control system test and
maintenance activities. The functions communicate through a
hierarchy of standardized test and maintenance buses.

Test Architecture A suite consisting of the UUT and any test equipment required,
based on the developed test strategy.

Testability Architecture Specification of the DFT and BIST features in the UUT.

Tester Architecture Specification of the configuration of test equipment required for
any externally based testing.

Test Bench A VHDL test bench is a collection of VHDL modules which apply
stimuli to a module under test (MUT), compare the MUT's
response with an expected output, and report any differences
observed and expected responses during simulation.

Test Means A vehicle used to detect, isolate, and possible correct an item
under test. The nature of the vehicle and item under test depends
on the life cycle step and level of system hierarchy at which the
test is applied.

Test Strategy A 2D matrix of ordered test means for detecting, correcting and
isolating a total population of items. Examples of items to be
D/I/C include, design flaws, manufacturing defects and field
defects.

Test Strategy Diagram The test strategy diagram (TSD) is a technique which is used in
the DFT Methodology to "knit" all processes together and to
provide a means of carrying information between and within
process steps.

Testability An attribute of a design at any level of abstraction that reflects the
ease with which the item can be tested. Testability is considered
poor if any characteristic of the item under test makes it difficult to
generate, evaluate, or apply tests.

Testing The process of detecting, isolating, and correcting an anomaly
arising from any phase of the system's life cycle.

Validated Library Element A prototype library element which has been designed for reuse,
tested, validated and documented according to the standards
defined for the reuse library.

Verification The process of determining conformance to a requirement has
been met by prototyping, simulation and/or detailed analysis.

Virtual Prototype The set of simulation models that comprises a prototype
processor. When exercised, the virtual prototype should behave
(function and performance) as closely as possible to its physical
counterpart.

6.0 REFERENCES

6.1 RASSP Documents

a. RASSP Methodology, Version 1.0, December 1994.
b. RASSP Model Year Architecture Working Document, Version 1.0, October 28, 1994.
c. Testability Architecture Description, Version x.x, in-process.
d. CAD System Description, Baseline 1.0, CDRL A007, Ver. 2.0, 3/8/95 (in-progress draft).

6.2 Non-RASSP Documents

The Documentation of Military Electronic Computers with the VHDL Handbook, Preliminary Draft
Manuscript, Section VIII, Modeling Testability with VHDL Models, April 16,1993.

Flynn, et al., "Using WAVES in a Top-Down Design Methodology", Proc. of VIUF Fall 1994 Conf.,
Component Modeling, paper 12.1.

Sanchez, "Concurrent Engineering with DFT in the Digital System: A Parallel Process", Proc. of
ITC 94, paper 36.1.

TABLE A-1. TEST METRICS/TOOL APPLICATION TABLE (TMAT)
5/4/95

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

3.2.1.2 SYSTEM
DEFINITION

REQM’S CHK
(REALIZABLE,
CONSISTENT, VALID)

MANAGEMENT
COMMITMENT

RTI TOOL OR
MANUAL ANALYSIS

MANUAL ASSESSMENT OF
TOOLS, RESOURCES, SCHEDULE

3.2.2.2 FUNCTIONAL
DESIGN

TEST MEANS
EFFECTIVENESS FOR
SELECTION

HISTORICAL DATA OR REUSE
DATA

3.2.3.2 ARCHITECTURE
SELECTION
(ANOMALY
STATISTICS)

DESIGN FLAWS DESIGN PROBLEM REPORTING
(M, T)

3.2.3.2 ARCHITECTURE
SELECTION
(DFT/BIST IMPACT)

ANALYSIS DATA FOR
BIST IMPACT ON
PERFORMANCE

STATISTICAL DATA BASED ON
SELECTED TESTABILITY
ARCHITECTURE

3.2.3.2 ARCHITECTURE
SELECTION
(TESTABILITY
ANALYSIS DATA)

TESTABILITY ANALYSIS
DATA AT THE ARCHITECT.
LEVEL

TDM ANALYSIS AT THE
ARCHITECT. LEVEL

AMBIGUITY GROUP
ANALYSIS

TDM ANALYSIS AT THE
ARCHITECT. LEVEL

3.2.3.2 ARCHITECTURE
SELECTION
(SIMULATION
PERFORMANCE
STATISTICS)

FLAW DETECTION
COVERAGE
OF DESIGN FLAWS

SIMULATION LOG; MANUAL LOG

FLAW ISOLATION
COVERAGE
OF DESIGN FLAWS

SIMULATION LOG; MANUAL LOG

FLAW CORRECTION
COVERAGE
OF DESIGN FLAWS

MANUAL LOG

3.2.3.2 ARCHITECTURE
SELECTION
(COST DATA)

COST OF TDM ANALYSIS TDM ANALYSIS LOG

COST OF SIMULATION SIMULATION LOG
3.2.4.2 ARCHITECTURE

VERIFICATION
(ANOMALY
STATISTICS)

DESIGN FLAWS DESIGN PROBLEM REPORTING
(M, T)

3.2.4.2 ARCHITECTURE
VERIFICATION
(DFT/BIST IMPACT)

ANALYSIS DATA FOR
BIST IMPACT ON
PERFORMANCE

STATISTICAL DATA BASED ON
SELECTED TESTABILITY
ARCHITECTURE

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

3.2.4.2 ARCHITECTURE
VERIFICATION
(TESTABILITY
ANALYSIS DATA)

TESTABILITY ANALYSIS
DATA AT THE ARCHITECT.
LEVEL

TDM ANALYSIS AT THE
ARCHITECT. LEVEL

AMBIGUITY GROUP
ANALYSIS

TDM ANALYSIS AT THE
ARCHITECT. LEVEL

3.2.4.2 ARCHITECTURE
VERIFICATION
(SIMULATION
PERFORMANCE
STATISTICS)

FLAW DETECTION
COVERAGE
OF DESIGN FLAWS

SIMULATION LOG; MANUAL LOG

FLAW ISOLATION
COVERAGE
OF DESIGN FLAWS

SIMULATION LOG; MANUAL LOG

FLAW CORRECTION
COVERAGE
OF DESIGN FLAWS

MANUAL LOG

3.2.4.2 ARCHITECTURE
VERIFICATION
(COST DATA)

COST OF TDM ANALYSIS TDM ANALYSIS LOG

COST OF SIMULATION SIMULATION LOG

3.2.5.2 DETAILED DESIGN
(ANOMALY
STATISTICS)

DESIGN FLAWS
BY SYSTEM AND
POPULATION OF SYSTEMS

DESIGN PROBLEM REPORTING
(M, T)

PROTOTYPE ASSEMBLY
FAULTS

PROTOTYPE PROBLEM
REPORTING (M, T)

3.2.5.2 DETAILED DESIGN
(TESTABILITY
ANALYSIS DATA)

TESTABILITY ANALYSIS
DATA AT THE CHIP,
BOARD LEVEL

C/O ANALYSIS OR ATPG AND
FAULT SIM OR PROB FAULT
GRADING AT THE CHIP LEVEL
C/O ANALYSIS (E.G., TEST
ACCESS ANALYZER) OR ATPG
AND FAULT SIM OR PROB FAULT
GRADING AT THE BOARD LEVEL;
TDM ANALYSIS AT THE SYSTEM
LEVEL

3.2.5.2 DETAILED DESIGN
(BIST
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF PROTOTYPE DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF PROTOTYPE DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION
COVERAGE
OF PROTOTYPE DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FALSE ALARM RATE AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR PROTOTYPE DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

FAULT ISOLATION TIME
FOR MFG. DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION TIME
FOR PROTOTYPE
DEFECTS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

AVERAGE AND MAXIMUM
AMBIGUITY GROUP SIZE

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.5.2 DETAILED DESIGN
(BIST
PERFORMANCE
PREDICTION)

FAULT DETECTION
COVERAGE
AT CHIP, BOARD, AND
SYSTEM LEVELS

FSIM OR PROB FAULT GRADING
AT CHIP AND BOARD LEVEL;
INTEGRATION OF LOW LEVEL FC
VALUES, PLUS BACKPLANE &
CABLE COVERAGE AT SYSTEM
LEVEL; ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

FAULT ISOLATION
COVERAGE

FSIM OR PROB FAULT GRADING
AT CHIP AND BOARD LEVEL;
INTEGRATION OF LOW LEVEL FC
VALUES, PLUS BACKPLANE &
CABLE COVERAGE AT SYSTEM
LEVEL;
ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

FAULT CORRECTION
COVERAGE

FSIM OR PROB FAULT GRADING
AT CHIP AND BOARD LEVEL;
INTEGRATION OF LOW LEVEL FC
VALUES, PLUS BACKPLANE &
CABLE COVERAGE AT SYSTEM
LEVEL; ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

3.2.5.2 DETAILED DESIGN
(MFG AND FIELD
TEST
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
AT CHIP, BOARD, AND
SYSTEM LEVELS

ATPG AND FSIM OR PROB FAULT
GRADING AT CHIP AND BOARD
LEVEL; INTEGRATION OF LOW
LEVEL FC VALUES, PLUS
BACKPLANE & CABLE
COVERAGE AT SYSTEM LEVEL
ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

FAULT ISOLATION
COVERAGE
OF PROTOTYPE DEFECTS

ATPG AND FSIM OR PROB FAULT
GRADING AT CHIP AND BOARD
LEVEL; INTEGRATION OF LOW
LEVEL FC VALUES, PLUS
BACKPLANE & CABLE
COVERAGE AT SYSTEM LEVEL;
ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

FAULT CORRECTION
COVERAGE
OF PROTOTYPE DEFECTS

ATPG AND FSIM OR PROB FAULT
GRADING AT CHIP AND BOARD
LEVEL; INTEGRATION OF LOW
LEVEL FC VALUES, PLUS
BACKPLANE & CABLE
COVERAGE AT SYSTEM LEVEL;
ALSO, BS BASED FAULT
INSERTION AT BOARD AND
SYSTEM LEVEL

3.2.5.2 DETAILED DESIGN
(PROTOTYPE TEST
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF PROTOTYPE DEFECTS

TEST EQUIPMENT LOGS
FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF PROTOTYPE DEFECTS

TEST EQUIPMENT LOGS
FRACAS (M, T)

FALSE ALARM RATE TEST EQUIPMENT LOG; FRACAS
(M, T)

FAULT DETECTION TIME
FOR PROTOTYPE DEFECTS

TEST EQUIPMENT LOG; FRACAS
(M, T)

FAULT ISOLATION TIME
FOR MFG. DEFECTS

TEST EQUIPMENT LOG; FRACAS
(M, T)

3.2.5.2 DETAILED DESIGN
(TIME AND COST
STATISTICS)

LOGIC SIMULATION TIME
AND COST

SIMULATION LOG (M, T)

TEST GENERATION TIME
AND COST

ATPG LOG (M, T)

FAULT SIMULATION TIME
AND COST

SIMULATION LOG (M, T)

FAULT INSERTION TIME
AND COST

FAULT INSERTION LOG (M, T)

3.2.6.2 MANUFACT.
(ANOMALY
STATISTICS)

DESIGN FLAWS
BY SYSTEM AND
POPULATION OF SYSTEMS

DESIGN PROBLEM REPORTING
(M, T)

MANUF. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG (T); FRACAS (M, T)

3.2.6.2 MANUFACT.
(BIST
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

FAULT CORRECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FALSE ALARM RATE ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.6.2 MANUFACT.
(ATE
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FALSE ALARM RATE ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

AVERAGE AND MAXIMUM
AMBIGUITY GROUP SIZE

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.6.2 MANUFACT.
(RMA
PERFORMANCE
STATISTICS)

RELIABILITY (MTBF) BY
SYSTEM AND POPULATION
OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

MAINTAINABILITY (MTTR)
BY SYSTEM AND
POPULATION OF SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

AVAILABILITY BY SYSTEM
AND POPULATION OF
SYSTEMS

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.6.2 MANUFACT.
(TEST COST
STATISTICS)

COST OF TEST
APPLICATION BY SYSTEM
AND POPULATION OF
SYSTEMS

ATE-BASED DATA COLLECTION
(T);

3.2.7.2 FIELD
(ANOMALY
STATISTICS)

DESIGN FLAWS
BY SYSTEM AND
POPULATION OF SYSTEMS

DESIGN PROBLEM REPORTING
(M, T)

MANUF. DEFECTS BY
SYSTEM AN POPULATION
OF SYSTEMS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.7.2 FIELD SUPPORT
(BIST
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

FAULT CORRECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FALSE ALARM RATE AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT CORRECTION TIME
FOR FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.7.2 FIELD SUPPORT
(ATE
PERFORMANCE
STATISTICS)

FAULT DETECTION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

FAULT DETECTION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION
COVERAGE
OF FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FALSE ALARM RATE AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT DETECTION TIME
FOR FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR MFG. DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O, I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

FAULT ISOLATION TIME
FOR FIELD DEFECTS BY
SYSTEM AND POPULATION
OF SYSTEMS
(O. I, D LEVELS)

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

AVERAGE AND MAXIMUM
AMBIGUITY GROUP SIZE

ATE-BASED DATA COLLECTION
(T); AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.7.2 FIELD SUPPORT
(RMA
PERFORMANCE
STATISTICS)

RELIABILITY (MTBF) BY
SYSTEM AND POPULATION
OF SYSTEMS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

MAINTAINABILITY (MTTR)
BY SYSTEM AND
POPULATION OF SYSTEMS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

PROCE
SS
STEP

STEP NAME METRIC TOOL (T) OR METHOD (M)
EXAMPLES

AVAILABILITY BY SYSTEM
AND POPULATION OF
SYSTEMS

AUTOMATIC FAULT HISTORY
LOG; FRACAS (M, T)

3.2.7.2 FIELD SUPPORT
(TEST COST
STATISTICS)

COST OF TEST
APPLICATION BY SYSTEM
AND POPULATION OF
SYSTEMS

ATE-BASED DATA COLLECTION
(T); MANUAL FIELD DATA
COLLECTION

Footnotes:

1. Statistical data is data obtained through simulations, using BIST impact incorporated in the
functional model. Goodness is based on the quality of the simulation.

2. TDM is a topological dependency model, such as STAMP, STAT, etc.
3. Flaw detection affects architecture selection because it is another indicator of the sufficiency of

test access in the architecture.
4. Cost data for all DFT processes are collected to ascertain cost effectiveness for future use.
5. Metrics are the same for arch. selection and verification since one is a refinement of the other.
6. Prototype assembly faults are determined to some extent in design phase through some

limited testing and again more thoroughly in manufacturing.
7. Fault detection, isolation, correction coverage is determined in prototype testing through

measurement techniques, such as logging and FRACAS.
8. Min and max ambiguity group size is collected also, to determine the average.
9. BIST Performance statistics are measured values, while prediction is predicted values
10. FD Coverage numbers will vary, depending on the fault model.

