
COMMON MODELS FOR CONFIGURATION
MANAGEMENT AND AUTHORIZATION

MANAGEMENT IN SYSTEMS ENGINEERING
ENVIRONMENTS

Biju Kalathil and John Welsh
Lockheed Martin Advanced Technology Laboratories

1 Federal Street, A&E Building
Camden, NJ 08102

bkalathi@atl.lmco.com and jwelsh@atl.lmco.com

Mary Catherine Tuck, Mark Bailey, and Auti Zielhke
Intergraph

One Madison Industrial Park, MS GD3005
Huntsville, AL 35894

mctuck@ingr.com

Abstract. In an integrated product development
environment that includes several vendor tools, diverse
and incompatible configuration management mech-
anisms and authorization management mechanisms
across tools can lead to inefficiencies in the design
process. We describe in this document a common model
of configuration management and authorization that
may be adopted for an integrated product development
environment. We specified a common minimal set of
configuration management mechanisms and authoriza-
tion management mechanisms that must be provided by
the tools to support the proposed configuration and
authorization models. We implemented a pilot program
of the configuration management and authorization
management models using Intergraph Corporation’s
Document Manager 2.0 (DM2) software system. This
pilot implementation proves the plausability and
usability of the model.

1. INTRODUCTION

Configuration management means managing
different versions of design objects. It includes creating,
approving, and releasing a new version of a design
object; organizing the versions of a design object; and
assembling compatible configurations of versions of
design objects to form a release of a product. Author-
ization management supports the granting and revok-
ing of access to data by users of a system, and it ensures
that user authorization is checked before a user is
allowed access to a data object. Different CAD vendor

tools provide different mechanisms to support con-
figuration management and authorization management.
A mechanism is an individual function of a system.
The mechanisms provided by the tools not only vary in
scope, but also in their semantics. In an integrated
product development environment (IPDE) that includes
several vendor tools, diverse and incompatible config-
uration management mechanisms and authorization
management mechanisms across tools can lead to the
following inefficiencies in the design process:

• There is no common way to handle the config-
uration management and authorization manage-
ment of a product throughout its life cycle

• The design engineers working on a project have
to learn several different paradigms of configura-
tion management and authorization manage-
ment.

• The configuration management data on a
product generated by one tool cannot be used by
another tool

• The authorization information cannot be shared
among the various tools used in the IPDE.
Authorizations have to be specified separately in
the various tools and managing the consistency
of the authorization information among the
tools in the IPDE is a management nightmare
and a significant cost overhead.

We describe in this document a common model of
configuration management and authorization that may
be adopted for an IPDE. We specified a common

minimal set of configuration management mechanisms
that must be provided by the tools to support the
proposed configuration and authorization models. An
important criterion we followed in developing the model
and the mechanisms is that they should be generic
enough to allow an organization to adopt any configura-
tion management process or authorization management
policy it chooses. We implemented the configuration
management and authorization management models as
part of the design environment developed for the Rapid
Prototyping of Application-Specific Signal Processors
(RASSP) program.

The RASSP program is an Advanced Research
Projects Agency/Tri-Service program to dramatically
improve the way digital signal processors are designed,
manufactured, tested, and procured. The RASSP pro-
gram will deliver an integrated system that integrates
the CAD tools used in its design process, which is
known as the enterprise framework. An enterprise
framework provides the facilities and services to inte-
grate the automated processes of an enterprise. In the
RASSP system, the enterprise framework supports
workflow management, design data management, library
management, computer-supported collaborative work,
and remote tool access.

In sections 2 and 3 we describe the RASSP
configuration management model and list a set of
mechanisms specified by the model. In sections 4 and 5
we describe the RASSP authorization model and list the
mechanisms specified by the model. In section 6 we
detail how we implemented the models under the
RASSP design environment. In section 7 we sum-
marize our findings.

2. CONFIGURATION MANAGEMENT IN
THE RASSP SYSTEM

2.1 Shared and Private Workspaces. Work-
spaces are partitions of the design object space that
allow designers to selectively make their design objects
visible to others in the project [Cattell, 1991].
Workspaces are organized hierarchically, as shown in
Figure 1. There is a global workspace at the root of the
hierarchy, shared workspaces as the intermediate nodes
in the hierarchy, and private workspaces as the leaves in
the hierarchy. The links in a workspace hierarchy
represent a parent-child relationship between the linked
workspaces.

Workspaces provide varying levels of sharing of
data objects. A workspace user has visibility to all the

Global WS

Private WS1 Shared WS1

Private WS2 Private WS3

…

…
BJK-005

Figure 1. A workspace hierarchy

objects in the workspace and the objects in the ancestor
workspaces of the workspace. All database users have
visibility to data objects in the global workspace.

2.2 Data Object Versioning. We propose a data
object versioning scheme where related data objects that
evolve at the same time are grouped together as
configurations, and versioning is managed at the level
of configurations1. New configuration objects are
typically created in a private workspace, at which point
the configuration is considered a transient version of the
configuration. A transient version may be updated or
deleted. Once the transient version of a configuration
reaches a state of maturity suitable for sharing with
other designers in a project, it is promoted to a working
version of the configuration, by checking in the con-
figuration from the private workspace where it resides,
to its parent workspace. A working version may not be
updated, but it may be deleted. Working versions of
configurations that represent the final state of design are
promoted to released versions by checking into the
global workspace. A released version may not be up-
dated or deleted. We use the notation state

i
 > state

j
 to

denote that state
i

is a higher state that state
j
. Thus

released > working > transient

The versions of a configuration are organized as a
directed acyclic graph, as shown in Figure 2, which is
commonly referred to as a version tree. The following
rule applies to a version tree: VT-Rule1: Given two
versions c

i
 and c

j
 of a configuration c, such that c

i
 -> c

j
,

then the state of c
j
 should be less than or equal to the

state of c
i
.

3. RASSP CONFIGURATION
MANAGEMENT MECHANISMS

The RASSP configuration management model specifies
the syntax and semantics for the following mechanisms:

• Creating a workspace

1 An individual RASSP enterprise framework tool may
support versioning at the level of data objects also.

…C3 C4

C1

C2

… …
BJK-006

Figure 2. A version tree.

• Accessing an arbitrary workspace
• Accessing child workspaces
• Accessing the parent workspace
• Making a workspace visible
• Creating a configuration
• Inserting data objects into a configuration
• Checking out a configuration
• Checking in a configuration
• Accessing child versions
• Accessing the parent version
• Naming versions
• Retrieving a named version.

4. THE RASSP AUTHORIZATION MODEL

An authorization is a triplet {o
i,
, r

j
, t

k
} where o

i
 is

an authorization object in an authorization object
hierarchy, r

j
 is a authorization role in an authorization

role hierarchy, and t
k
 is an authorization type in an auth-

orization type hierarchy [Rabitti, 1991]. An authoriza-
tion object is a data object on which an authorization
may be specified. Authorization objects in a database are
organized as a directed acyclic graph, as shown in Figure
3. An authorization role is a collection of users who
have the same set of authorizations on the same set of
objects. The authorization roles in an organization are
also organized as a directed acyclic graph, as shown in
Figure 3. An authorization type is a type of operation
that may be performed on a data object. The authoriza-
tion types for a database are also organized as directed
acyclic graphs, as shown in Figure 4. In Figure 5, the
“Grant” authorizations are authorizations to grant an
authorization to another role in the role hierarchy. The
authorization type hierarchy for projects also contains
the “Grant” authorizations. The directed links between
two nodes in a hierarchy represent an implication
relationship between the nodes.

An authorization may be positive , granting an
authorization, or negative, revoking an authorization.
An explicit or an implicit positive authorization {o

i
, r

j
,

t
k
} has to exist for users to perform an operation of type

t
k
 belonging to role r

j
 on a data object belonging to the

authorization object o
i
.

5. RASSP AUTHORIZATION
MECHANISMS

The RASSP authorization management model
specifies the syntax and semantics for the following
mechanisms:

• Creating an authorization object
• Deleting an authorization object
• Adding a child to an authorization object
• Associating data files with authorization

objects
• Retrieving an authorization object
• Retrieving the children of an authorization

object
• Creating an authorization role
• Deleting an authorization role
• Adding a child to an authorization role
• Associating users with authorization roles
• Retrieving an authorization role
• Retrieving the children of an authorization role
• Retrieving an authorization type
• Retrieving the children of a node in the

authorization type hierarchy
• Granting authorizations
• Revoking authorizations.

6. IMPLEMENTING THE RASSP
CONFIGURATION AND AUTHORIZATION

MANAGEMENT MODELS

We implemented a pilot program of the config-
uration management and authorization management
models using Intergraph Corporation’s Document
Manager 2.0 (DM2) software system.

DM2 is an enterprise-wide electronic object man-
agement system that provides an object-oriented frame-
work with functionality for storage, query, security, and
usage control. DM2’s architecture provides a graphical
environment to assist users in quickly locating and
using objects. DM2 manages information by ensuring
that access is controlled and integrity is preserved
throughout the life cycle of an object. Users can tailor
DM2 to provide the following functions: administra-
tion of user, groups, and hosts; creation of a generic set
generic set of object classes and relationships; object
creation, storage, vaults, and queries; and rule-driven
security.

Users implement the workspace hierarchy in DM2
using the features of users and vaults. Relationships

Signal Processor

Requirements
Data

Simulation
Data

Configuration

Manufacturing
Requirements

Planning
Data

Functional

Performance

Cost
Data

Behavioral

Network

Problem
Report Change

Proposal
Change
Notice

Reqs. Test
Plans

Test
Sets

Results

Design
Data

System
Definition

Architecture

Hardware

Software

Mechanical
Packaging

Test
Data

Waiver

BJK-007

Figure 3. An example authorization object hierarchy.

Systems
Engineer

Project Manager

Engineering
 Manager

Manufacturing
 Manager

Producibility
 Manager

Sourcing
Manager

Integrated Logistics
Support Manager

Architecture
 Engineer

 Digital
Engineer

Software
Engineer

Mechanical
 Engineer

 Test
Manager

BJK-008

Figure 4. An example authorization role hierarchy.

Destroy

Checkin_Version

Update

Read

Grant_Destroy

Checkout_Version

Grant_Checkin_Version

Grant_Checkout_Version

Grant_Update

Grant_Read

BJK-009

Figure 5. The authorization type
hierarchy for design data objects.

between workspaces are enforced by defining groups,
which contain related users, and limiting the access of
these groups through the use of rules.

In DM2, each user has a private workspace. That
is, there is a one-to-one mapping between a user and a
private workspace. Based on projects, a parent-child
relationship can be established between private and
shared workspaces. Rules enforce the privacy of
individual workspaces. Shared workspaces are imple-
mented through vaults, which are logical collections of
shared objects. Rules control access to a vault. User-to-
vault relationships can be established to allow visibility
of ancestor workspaces. The global workspace consists
of selected data from all shared workspaces (vaults)
obtained through the DM2 query capability. The DM2
implementation of the RASSP workspace hierarchy is
shown in Figure 6.

Users map a global workspace in DM2 to all
baselined objects in all vaults within a database. Items
are visible in a global workspace through the DM2
Saved Query Object Class. Users map shared
workspaces in DM2 to a vault/vault location that they
can access by performing transfer, checkin, and checkout
operations. A vault may contain data objects or actual
file system items. A vault location provides a file
system location for storing physical files owned by the
vault. A private workspace may have more than one
work location. Similar to vault locations, a work
location provides actual file system space for objects
residing in a private workspace.

DM2 provides out-of-the-box implementation of
the RASSP authorization model by providing func-
tionality equivalent to that of the triplet described in
section 4. In addition, DM2 extends the definition of
the triplet by adding a condition that defines the
circumstances for an authorization role to perform an
operation on an object. An authorization in DM2 may
be described as a quadruplet {o

i
, r

j
, t

k
,c

n
} where c

n
 is the

authorization condition. In DM2, the quadruplet is a
message access rule. In a message access rule, an
authorization object is an object class on which an
operation may be specified, an authorization role is a
defined group or user for which the authorization is
valid, and an authorization type is a message group that
defines operations which may be performed on the
object class.

7. CONCLUSION

The RASSP configuration management and
authorization management model provides the core set
of mechanisms necessary to support any policy or
methodology an organization may choose to adopt in
the respective areas. It is based upon mainstream
approaches established in the database community and it
provides a common approach that may be adopted by
systems engineering environments. We implemented
the models in the Intergraph DM2 product data
management system to support systems engineering,
using its extensibility and customization facilities
without requiring changes to the source code. This pilot
implementation proves the plausability of the model.
We are exercising the implementation on the RASSP
Design Process Benchmarking project to further study
the model’s usability.

REFERENCES

[Cattell, 1991] Cattell, R.G.G., Object Data Manage-
ment, Massachusetts: Addison Wesley, 1991.

[Rabitti, 1991] Rabitti, F., Bertino, E., Kim, W., and
Woelk, D., "A Model of Authorization for Next-
Generation Database Systems," ACM Transactions on
Database Systems 16(1): 88-131, March, 1991.

{ EMBED Word.Picture.6 }

Figure 6. DM2 workspace.

Legend:

= Represents the physical file system location for the items residing in the associated vault (shared
workspace) or user (private workspace).
VL = Vault Location: Each vault location will be associated with only 1 vault.
WL = Work Location: Each work location will be associated with only 1 user.

= Represents a DM2 saved query.
SQ = Saved Query: Every user will have access to the Global Workspace through a predefined query.

= Represents a logical collection of objects based on ownership.

