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Abstract
This paper describes a design for testability process, which is highly automated,
hierarchical, and spans the entire life cycle. The process was developed for the DoD's
RASSP Program and contributes significantly to the RASSP goals of 4x improvement in
cycle time, design quality, and life cycle costs.
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1.0 Introduction

The Rapid Prototyping of Application Specific Signal Processors (RASSP) program is a
DoD sponsored program to develop processes for the design, manufacturing, and fielding
of signal processor based systems (the processes being referred to in this paper collectively
as a "methodology") that will achieve four times (4x) improvements in cycle time, design
quality, and life cycle costs. As part of that methodology, a design for testability (DFT)
process or methodology has been developed that supports and facilitates the achievement of
the RASSP goals and strives for testable systems at each phase of the life cycle and at each
level of the packaging hierarchy. This paper describes the key features of the RASSP DFT
Methodology.

The DFT methodology provides designers and test engineers a process for introducing test
requirements and strategies early in the design cycle. It also provides procedures for test
strategy selection and DFT implementation at the chip, MCM, board, and system levels.
DFT strategy selection and implementation activities operate on successive refinements of
the design, starting from the conceptual (system specification) level down to the physical
implementation level. The impact of test decisions on meeting requirements, as well as the
tracking of compliance to test requirements, is analyzed at all levels of the design and all
phases of the life cycle. While the methodology is not driven by specific test tools,
knowledge of the existing tools has been used to ensure the practicality of the
methodology.

2.0 The Life Cycle Test Problem

In the RASSP DFT methodology, the test problem, along with DFT solutions, are
addressed from a life cycle standpoint, as described in the sections that follow.

2.1 The Design Test Problem

Increased emphasis on shortening the time to first customer delivery, improving quality,
managing the complexity of designs more effectively, and reducing overall life cycle costs,
drives designers to find more efficient ways of performing design verification and
prototype test. During integration of hardware and software, unanticipated iterations
between hardware and software arise which can result n significant schedule delays.



Detecting and isolating these events/ problems can add weeks to months to tight schedules.
At the same time, accessibility problems exist on systems with MCM's or conformally
coated boards, after the unit enclosure is sealed, or when the UUT is placed in an
environmental test chamber. The net result is hardware/software debug and integration
problems are outpacing solutions.

2.2 The Production Test Problem

Testing high performance integrated circuits and high density boards o r MCMs is a
difficult task because of their performance, complexity, and physical and/or electrical
constraints. System clock frequencies are surpassing the capabilities of Automatic Test
Equipment. Traditional test methods such as in-circuit probing cannot be applied to new
technologies such as Ball Grid Arrays, Surface Mounted parts and MCMs unless test
points are provided or new methodologies, such as boundary scan, are applied.

2.3 The Field Test Problem

The same problems outlined above for design and production test also apply to field test.
The cost of procuring and maintaining test equipment, as well as the cost to develop and
maintain TPSs, is outstripping budgets. It is no longer practical to require highly skilled
troubleshooters to perform diagnosis of system problems. The cost of stocking spares is
driven by unit cost and false alarms. Failures identified in the field which cannot be
duplicated at the depot (i.e., LRU was good and/or system backplane was out of spec.)
must be minimized.

The net result is that users are requiring built-in-test and diagnostics be supplied with
electronic equipment as a requirement on par with size, weight and power limitations.

3.0 Significant Concepts in the DFT Methodology

There are several key concepts employed in the DFT methodology, which are addressed
below.

3 .1 A Broadened Scope for the Concept of Testing and DFT

In the DFT Methodology, the term "testing is expanded to encompass any process which
detects, isolates, and corrects anomalies (e.g., design flaws, manufacturing defects, field
defects) in any phase of the life cycle. The definition of testing is expanded so that DFT
provides the greatest contribution to achieving the RASSP 4x improvement goals in cycle
time, quality, and cost.

3.1.1 The Concept of the Test Cycle

In all testing one common subprocess exists, which is referred to as "the test cycle." As
depicted in Figure 1, the test cycle consists of three functions: detection, isolation, and
correction.



Figure 1 - The Test Cycle

• "Detection" determines the presence of an anomaly, including design flaws,
manufacturing defects, and field defects.

• "Isolation" determines the location of the cause of the anomaly.
• "Correction" is the process of removing and replacing the item causing the anomaly,

such as would occur in a manufacturing or field repair process. Depending upon
context, it is also considered to be the process of removing the damaging effect of the
item causing the anomaly, such as would be the case in a fault-tolerant system.

• Other test related functions that have widespread application in the life cycle of a system,
such as test control, initialization, recording and reporting of anomalies are important
functions. But they are not as fundamental and common to every test process in every
phase of the life cycle, as the functions defined in the "test cycle".

3.2 Compliance Tracking

Continuous test requirements compliance tracking is implemented through overlapping
processes of prediction, verification, and measurement. "Prediction" is the process of
determining compliance to test requirements prior to the availability of a complete, detailed
design. It is accomplished through comparison with similar library elements or through
analytic techniques, such as circuit level testability measures or topological dependency
models. "Verification" makes use of such techniques as deterministic fault simulation,
probabilistic fault grading, and closed form proofs, for such techniques as exhaustive type
BIST approaches.

"Measurement" compliance tracking process applies when test performance measurements
can be made on actual hardware and software, such as physical prototypes, manufactured
or fielded systems.

Together, the three processes of prediction, verification, and measurement provide
feedback to track test requirements compliance and to allow correction of deficiencies. In
addition, the same feedback is used tD correlate the results of the methods and tools used in
the three overlapping compliance tracking processes to assess their adequacy and permit
improvement in the tracking processes themselves.

3.3 DFT Reuse Concept

One of the key ways in which the DFT Methodology contributes to the achievement of the
RASSP goals is through the enforcement of reuse in four different dimensions. The four
dimensions of DFT reuse are as follows:



a. Across the life cycle phases within a given model year. From system definition to field
support, each DFT/BIST embodiment or instantiation is designed for maximum reuse in
the phases to follow.

b. Across the packaging hierarchy within a given model year. From chip to system, each
DFT/BIST embodiment or instantiation is designed for maximum reuse in testing the
package levels above and below it.

c. Across a single packaging level within a given model year. Each DFT/BIST embodiment
or instantiation is designed for maximum reuse in testing other entities within the same
package level. For example, a board level BIST technique is examined to see if it can be
used for testing other boards in the system.

d. Across new model years or as new systems/ products unfold. The RASSP reuse library
is used to provide the outputs of some steps in the process (rather than perform the step
from scratch), and outputs of each process step become candidates for encapsulation in
the reuse library for future model years or systems. Test related reuse items include, for
example, test requirements; test strategies; DFT/BIST techniques for certain logic
structures; testable chips, MCMs, etc.; BIST software modules; and test vector sets as
appropriate.

3.4 Relationship of Test Requirements, Test Strategies, and Test
Architectures

Figure 2 illustrates the relationship between test requirements, test strategies, and test
architectures. Test requirements specify the fault coverage, test time, and other parameters
associated with testing the Unit-UnderTest (UUT). The UUT may be a chip, MCM, board,
or system. Test requirements do not include specification of test means, but instead, are
allocated to various test means during the development of "test strategies."

Figure 2 - Relationship of Test Requirements,
Test Strategies, and Test Architectures

Requirements are checked for realizability, consistency, and validity when they are
received, generated o r specified. This process minimizes the problem where an invalid
requirement [such as 99% single stuck-at gate level fault detection for a design with 100%



commercial off-the-shelf (COTS) components] flows all the way down the board level
before it is found to be impossible to meet. A requirement is considered realizable if it can
be achieved, given current test technology, and system constraints (size, weight, power,
degree of COTS, etc.). A requirement is consistent, if it does not contradict any other
requirements and is traceable to a higher level requirement. Finally, a test requirement is
valid if there is currently a practical and cost effective means to predict, verify, and measure
compliance. A requirement is amended or deleted if it is not consistent, realizable, and
valid.

A test strategy) defines the mix of test means by which the UUT will be tested and is
developed for each phase of testing (design, manufacturing, and field. Test means can be
built-in self-test (BIST hardware and/or software based), test equipment, and manual
procedures. Test requirements drive the selection and mix of test means and are allocated
each of the selected test means. Test strategies, which are specified and managed by the use
of "test strategy diagrams" described below, drive the development of test plans and test
procedures at each level of the packaging hierarchy. Test plans describe a high level view
of testing the UUT, including budget, schedule, resources, capital equipment, and a
description of the test flow. Test procedures give the detailed, step by step procedures for
testing the UUT. As with test requirements, test strategies are checked for realizability,
consistency, and validity when they are generated and documented, before they are flowed
down to the next lower level of abstraction.

A    test architecture    is a suite consisting of the UUT and any test equipment required, based
on the developed test strategy. The test architecture consists of the "testbench architecture"
which describes the simulation-based testbench for design-verification; the "testability
architecture" which describes the DFT and BIST features in the UUT; and the "tester
architecture" which describes the configuration of "test equipment" required for any
externally based testing. During the development of the testability architecture, the impact
on the functional design, such as real estate, 1/0 pins, performance, power, and reliability,
is constantly evaluated be ensure it is acceptable. Test architectures are checked for
realizability, consistency, and validity when they are generated and documented, before
they are flowed down to the next level of abstraction (as was done with the test
requirements and strategies). Note, certain types of testability architectures, such as those
based on BIST and boundary-scan, are more robust than others, in that they are applicable
across the packaging hierarchy, as well as across all life cycle testing phases.

As the system is decomposed into its constituent elements, test requirements, test
strategies, and test architectures are "flowed-down" to each level of hardware packaging
and software abstraction level. At each level, compliance to the higher level test
requirements, strategies, and architectures is checked. If at a lower level, it is impossible to
adhere to the requirements, strategy, or architecture, the previous level or levels are re-
examined and analyzed to correct the problems in those higher level requirements, strategy,
or architecture. Note, the amount of backtracking required should be minimized and
problems should be identified earlier than in normal methodologies, since the strategy and
architecture are driven by the requirements and all three are checked for realizability,
consistency, and validity when they are generated initially at the front end of the process
and also when captured at each successive level.

3.5  Test Strategy Diagrams

The test strategy diagram (TSD) is a key construct used to bridge from requirements to
implementation, manufacturing, and field; to "knit" all of the test processes together; to
provide a means of carrying information between and within steps of the process; and
manage the requirements specification and compliance tracking.



The TSD is based on the simple concept of allocating a given "anomaly population" onto
given "test means" for the purposes of detection, isolation and correction. A “test means" is
a vehicle used to detect, isolate, and possibly correct an anomaly in an item under test. The
nature of the test means and item under test depends on the life cycle step and level of
system hierarchy at which the test is applied. For example, during the early stages of the
development process, the test means could be specified in general terms such as peer
reviews, simulation, ATE, and BIST, while the "item under test" might be specified as
requirements specifications, behavioral model, boards, and chips, respectively. On the
other hand, later in the detailed design stage, the vehicle might be DSP ASIC team review,
structural VHDL simulation, PC-based boundary-scan tester, and circular BIST
respectively, while the item under test might be DSP ASIC flowed down manufacturing
test requirements, DSP ASIC structural VHDL model, signal processing board prototype,
and DSP ASIC in manufacturing test.

The anatomy of a test strategy diagram is shown in Figure 3. It consists of a three by "n"
array of cells, comprised of one row for each of the three test functions, detection,
isolation, and correction. The n columns correspond to n test means, such as BIST, ATE,
or manual procedures. Test means are listed in priority order from left to right, starting with
the means that has the highest fault detection coverage. The input to the array is the total
population of anomalies. Each cell in the array can be thought of as a node in a flow graph,
having one input and one or two outputs.

Figure 3 - The Anatomy of a test Strategy Diagram

Inside each cell is a transfer function or operator that acts on the input to produce the
output(s). The most common transfer function in the TSD is the coverage operator, which
expresses the degree of detection, isolation, and correction coverage. It is stored as a
decimal value, displayed as a percentage and is multiplied times the quantity coming into
the cell. Note, the transfer functions of test means are position dependent. That is, the
transfer functions in the nth column operate on the residual population from the previous
(n-1 ).

In addition to the transfer function, one or more attributes are associated with the cell.
Examples of important attributes are test time, test cost, real estate penalty, quality levels,
etc. For example, a test time stored in the upper left cell in Figure 3 could represent the time
for test means #1 to detect a fault. A cost factor could include a one time (non-recurring)
cost for test generation and test evaluation, plus a recurring cost for test application that



would be incurred for each unit. The attribute is normally stored as a worst case value,
although average values can be used as appropriate.

Early in the process, initial values for transfer functions are requirements, while the
attributes and the anomaly population density can be obtained from historical data
accumulated in the RASSP reuse library, can be generated from new estimates (based on
similar systems), or can make use of a variable to take the place of a fixed value. As the
process continues, actual values for transfer functions, anomaly population densities, and
attributes are entered from predictions, verifications, and measurements.

The implied implementation of the TSD makes use of a three dimensional spreadsheet
paradigm, since it is a tool that is available in most companies and that can run on a PC.
However, it is certainly possible that a custom TSD tool could be developed in a compiled
high level language (e.g., C++) and provide much faster operation, particularly for large
systems, as well as provide a more friendly graphical user interface. When a TSD cell is
"activated," its attribute is factored into (usually by some simple arithmetic operation) the
accumulated value of that attribute through each path in the array intersecting with the cell.
Thus, test time and cost factors can be summed across test means and test functions. Test
cost information can be used for performing test strategy tradeoffs, manufacturing cost
budgeting, or maintenance and logistics planning. Test time information can be used for
input to a fault-tolerant system's availability model or for manufacturing test planning and
scheduling.

Each cell in the array has one or two outputs. The quantity exiting from the bottom of the
cell represents the "successful" quantity. For example, if the transfer function is fault
coverage, the quantity exiting from the bottom of the top left cell in 3 represents the
detected faults. The quantity exiting horizontally represents the "unsuccessful" quantity,
which in the example cited above would be the undetected faults. The quantity of
unsuccessfully handled faults can be used, as part of a manufacturing defect (quality) level
analysis.

"Terminating cells," represent the last means to achieve detection, isolation, and correction
and have only one nonzero output (successful D/l/C). In the case that a TSD lacks a
terminating cell for either detection, isolation, o r correction functions then that fault
quantity must be handled during testing at the next higher level of package testing.
Therefore, anomaly quantities emanating from the right side of the TSD must be included in
the anomaly population for the next higher level of package, along with the new fault
population associated with the next higher level package. Thus, the TSD concept forces
consideration of a 11 possible scenarios of anomaly detection, isolation, and correction.
For example, if 100% of the faults must be detected, isolated, and corrected by some
combination of BIST, test equipment, and manual procedures then the sum of all faults
entering the top of the system TSD must equal the sum of the outputs exiting at the bottom
of all TSDs across all packaging levels.

TSD's have many applications within the DFT Methodology, and the collection of TSDs
for a system forms a hierarchy, as shown in Figure 4. A TSD would be generated to
capture and store the initial system level test requirements (shown on the bottom left of the
figure). The system-level, requirements TSD is used to flowdown the requirements to
lower levels of the hierarchy, thus producing a requirements TSD at each packaging level.
As the prediction, verification, and measurement data are generated during compliance
tracking across the life cycle, a TSD is generated for each set of data (P, V, and M) at each
packaging level, and automatically is compared against the requirements TSD values to flag
compliance violations. A comparison can also be done between P data, V-data and M-data,
to assess the integrity of the prediction, verification, and measurement methods and tools.



Figure 4 - The Hierarchy  of Test Strategy Diagrams

The application of the TSD along the life cycle dimension in Figure 4 can be thought of as
providing traceability and reuse enforcement. This is accomplished by prohibiting the
"collapsing" of the TSD spreadsheet as the life cycle steps are traversed. For example, the
establishment of boundary-scan based PC testing during the design phase would
automatically be carried forward into the TSDs for manufacturing and the field to force at
least an analysis of the potential reuse of the test means in those stages.

The application of the TSD along the vertical (packaging hierarchy) dimension can be
considered as providing requirements allocation and reuse enforcement as well. In regard to
the latter application, the reuse enforcement is accomplished similar to the life cycle reuse
enforcement: by prohibiting the "collapsing" of TSD's when evaluating TSD values up the
hierarchy. It is required that a test means be carried up to at least one higher level of
packaging for analysis. For example, the use of BIST and boundary-scan in a chip as a
chip-level test-means would appear not only in the chip-level TSD, but also reappear in the
TSDs of at least the MCM or board in which the chip resides. If the chip becomes the basis
of a board-level BIST capability, that board-level BIST capability must be considered as a
test means for the system-level TSD. This philosophy forces the evaluation of the
contribution of low-level test-means (especially BIST) at the higher packaging levels.

The application of the TSDs in the diagonal dimension in Figure 4 (R, P, V, M) represents
the means for managing compliance tracking information. TSDs with dashed or dotted lines
represent, respectively, those that are preliminary or for which only partial information
would be available in that life cycle phase.



3.5.1 Example of Using TSD's for Integrated Diagnostics Analysis

Figure 5 provides an example of a TSD for trading off, analyzing, and finally capturing
field test requirements for a system having both BIST and fault tolerance requirements.
This example was developed under a study of the Integrated Diagnostics for a fault tolerant
avionics system for an advanced tactical fighter program. The test requirements for the
system assumed a fault model that consisted of single stuck-at faults, as well as single
transient or intermittent faults each fault affecting a single node.

Figure 5 - TSD's developed to study Integrated
Diagnostics for fault tolerant avionics.

In the project, failure rate was used as an estimate of relative fault population densities
(shown at the top of the diagram). It is important to note that the failure rate values were not
derived from the traditional MIL-STD 217 MTBF predictions. They were derived from a
reliability model which assumed that only the specific target faults defined in the fault
model occurred. Hence, consistency between the reliability predictions and the testability
analysis was assured.

The total failure rate for the system was allocated between two types of faults (stuck-at and
transient/intermittent). The allocation between the tow fault types was based upon statistics
gathered during previous field failure studies. The studies showed that similar systems in
the same type of environment tended to experience four times as many transient or
intermittent failures as solid (stuck-at) failures.

Following the allocation described above, the total failure rate for each fault population,
single stuck at and single transient/intermittent, was entered into the top of the respective
cell arrays. For both types of fault populations, the detection, isolation, and correction
requirements were entered into the cells for each of the three allowed test means: BlST/fault
tolerance, test equipment, and manual procedures. The calculations were performed using
test coverage and an attribute of test time. Fault coverage numbers in each cell are
multiplied times the failure rate number coming into the cell to determine what quantity of
the fault population is successfully detected, isolated, and corrected by each of the test
means.

The test time attribute is "activated" when the transfer function is applied to the fault
population entering a given TSD cell. The TSD allows for the analysis of each scenario of
handling faults by any combination of the three allowed test means, providing the possible
values of cumulative test time through each scenario path (shown at the bottom of each
array column). A range of aggregate test times is shown for all but the first column,



because there are several scenarios or mixes of detection, isolation, and correction means
that could lead to the same end point for the second and subsequent columns. For example,
within the single stuck-at fault array, the fault could be detected (400 ns) and isolated (400
us) by BlST/fault tolerance, but corrected manually, yielding the low end of the range at the
bottom of the manual procedure column, roughly 30 minutes. On the high end, the fault
could be detected (10 minutes), isolated (20 minutes), and corrected (30 minutes) solely by
manual procedures, yielding the upper limit, 60 minutes. Note that a range of cumulative
test time is indicated for the test equipment column even though there are no scenarios that
end there (due to the correction capability for test equipment being zero). This range is
shown simply for completeness and comparison purposes.

Later a cost figure was associated with the test time, and a "cost of test" analysis was then
performed to provide another dimension of tradeoffs to further refine the requirements.
Eventually, after many "what-if studies" using the TSD to swap test means and to evaluate
test times and costs for various test strategies, the requirements as shown in figure 5 were
finalized and 'frozen' in the TSD. Subsequent prediction, verification, and measurement
TSDs were then compared against the requirements TSD to flag discrepancies during
compliance tracking .

3.6 The Prescribed Testability Architecture

The prescribed RASSP testability architecture relies heavily on the use of BIST and IEEE
1149.1 boundary-scan incorporated at the IC level. It also relies on the reuse of BIST and
boundary-scan tests at all packaging levels from the MCM-level to the system-level. COTS
components and/or designs are accommodated by use of the "lead, follow, or get out of the
way" philosophy. The "lead" concept suggests insertion or use of a COTS item or reuse
item that incorporates BIST or DFT features that can form the basis for a test. The "follow"
concept applies COTS items that may not incorporate BIST or DFT features, but which at
least do not interfere with the test (e.g., simply pass the test vectors through to the next
stage). Finally, the "get out of the way" concept applies to COTS items which lack
testability and BIST, and which must be bypassed during the primary test process and dealt
with separately for their own test.

Communication of test data across the packaging hierarchy is accomplished through a
system of hierarchical test and maintenance controllers and busses such as IEEE 1149.5.

An overview of the RASSP DFT Methodology and its relationship to the overall RASSP
Methodology  is illustrated in Figure 6. It has some important features, as outlined below:
a. It is a methodology embedded in the RASSP methodology and proceeds concurrently. It

is deliberately not depicted as a separate process, but rather as an embedded subset of
the overall RASSP process.

b. It is driven by test requirements that span the entire life cycle of the system from design
to manufacturing to field support.

c. It promotes continuous tracking of compliance to requirements, rather than periodic
tracking.

d It forces attention to reuse in multiple dimensions

Details of the methodology are presented in the sections that follow, all of which make use
of Figure 6.



Figure 6 - The RASSP "DFT Methodology" embedded
in the overall methodology.

4.1 System Definition

As depicted in Figure 6, the first step, System Definition, involves test requirements
specification. The test requirements come from an integration of customer and derived
requirements for the three phases of testing -design, manufacturing, and field support.
Specification involves a preliminary, life-cycle cost-of-test analysis (if such an economics
model is available), a test-technology assessment, and a design-impact analysis to
determine the realizability, consistency, and validity of the requirements. Subsequently,
during the same step, the three sets of requirements are consolidated into a consolidated
requirements specification and captured in the first test strategy diagram. The purpose of
consolidating the life cycle requirements is to establish a single source of test requirements
and, more importantly, to encourage all three test organizations (design, manufacturing,
and field) be explore the possibility of a singular test philosophy that can be used
throughout the entire life cycle of the system.

4.2 Architecture Definition

The Architecture Definition phase, as shown in Figure 6, consists of three steps:
functional-design, architecture selection, and architecture-verification

In the architecture selection step, the top level test strategy is used to develop and evaluate
various candidate, top level test architectures, by determining which architecture(s) best
supports the top level test strategy with the least impact on the candidate "functional"
architectures. Thus, the impact of each test architecture on the candidate "functional"
architectures is assessed and incorporated into the tradeoff and selection process for them.
Test requirements, test strategy, and test architecture are then allocated to BIST/DFT
hardware and software for one or more of the selected architectures. In addition, candidate



DFT and BIST techniques are identified for later implementation, based on the specified
requirements. Also in this step, any top level BIST supervisory software development will
begin, as will on-line BIST code, since it may have an impact on functional performance
and throughput. Prediction and verification processes begin in this stage as appropriate for
compliance tracking.

In the Architecture Verification step, the next level of detail of the selected test
architecture(s) are generated and additional details are provided regarding the test
architecture impact on the selected functional architecture(s). For example, behavioral and
performance simulations will be modified to include effects of DFT/BIST techniques, such
as the estimated performance degradation due to hardware concurrent fault detection circuits
or due to periodic execution of on-line BIST software diagnostics. Prediction and
verification processes continue during this stage for compliance tracking.

4.3 Detailed Design

In the Detailed Design phase, test strategies, architecture, and requirements are flowed
down to the detailed design of BIST/DFT hardware and software. The detailed design of
the BIST/DFT hardware is performed concurrently and interactively with functional design
using automatic (e.g., front-end or back-end synthesis) or manual insertion and then is
reflected into behavioral and structural simulation models, whenever possible. The
BIST/DFT detailed design is performed interactively with the functional design, since each
impacts the other. Any remaining BIST software (e.g., for power-up or other off-line
BIST functions) is implemented. Test vector sets are developed and verified for each
packaging level for physical prototype test, production test, and field test. All test vector
sets are documented using WAVES. As the detailed design is verified and debugged,
design flaw models are updated to provide more accurate models for the TSDs. Prediction,
verification, and measurement processes are used in this stage for requirements compliance
tracking .

4.4 Manufacturing

In the Manufacturing phase, functional and performance testing of the overall prototype is
performed to verify compliance to functional and performance requirements, with DFT and
BIST hardware and software included. Ongoing production test is performed. Verification
and measurement processes are used in this stage for compliance tracking to test
requirements. Measurement data i s acquired through such techniques as automatic,
system, fault-history logging and ATE-based data collection. BIST and tester-based test
cost and performance data are captured and encapsulated for the reuse library.
Manufacturing defect analysis profiles and distributions are used to update the
manufacturing fault model for use in the TSDs.

4.5 Field Support

In the field phase, BIST and DFT capabilities are in use. BIST and DFT functions are also
used for lower level (e.g., organizational and depot level) testing. Verification and
measurement processes are used in this stage for compliance tracking. As in the
manufacturing phase, measurement data is acquired through such techniques as automatic,
system, fault-history logging and ATE-based data collection. BIST and tester-based test
cost and performance data are captured and encapsulated for the reuse library. Field defect
analysis profiles and distributions are used to update the field fault model for use in the
TSDs.



4.6 Additional Activities within the DFT Methodology

Throughout the entire DFT methodology, interfacing to the RASSP reuse library is
performed to access existing candidates and to add to the library when appropriate. In
addition, feedback is being provided continuously from the compliance tracking process
back to the responsible persons to assure corrective action is taken. Finally, it is recognized
that iterations may be necessary because of the inherent nature of the RASSP methodology.

5.0  Conclusions

An overview of the RASSP DFT Methodology has been presented. It is viewed as an
evolving methodology, which can be upgraded and extended effectively. Yet it is tightly
integrated with the overall RASSP methodology and directly supports the overall goal of
4X reduction in cycle time and cost.

The definition of testing is expanded to encompass all phases of the life cycle and to include
as fundamental activities: detection, isolation and correction. Process steps are included to
check requirements for consistency, validity and realizability. Test requirements are
consolidated for design verification testing, manufacturing testing, and field support testing
to ensure a singular test solution. Process steps are included tD predict, verify and measure
solutions be identify problems early and/or to provide feedback for subsequent model
years.

Test strategies and architecture are shared and flowed down to ensure consistency and to
minimize cost. A structured testability architecture based upon boundary scan and BIST is
promoted. Tools are used to control and verify test reuse library elements. Test strategy
diagrams are used to control, enforce and verify reuse of test resources across and within
levels of the system hierarchy. The TSDs also provide a basis for management (predict,
verify and measure) of the requirements as they are flowed down.
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