

SLC1657 8-Bit RISC uC Core
Technical Reference Manual

Silicore Corporation

•

Silicore Corporation
6310 Butterworth Lane; Corcoran, MN (USA) 55340
TEL: (763) 478-3567 FAX: (763) 478-3568
URL: www.silicore.net

Electronic Design
Sensors • IP Cores

Technical Reference Manual 2 SLC1657

SLC1657 8-bit RISC Microcontroller for VHDL

Copyright 2001 SILICORE CORPORATION. Permission is granted to copy, distrib-
ute and/or modify this document under the terms of the GNU Free Documentation Li-
cense, Version 1.2 as published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License". Silicore is a registered
trademark of Silicore Corporation (Corcoran, MN USA - www.silicore.net). All other
trademarks are the property of their respective owners.

History:

18 August 2003: SLC1657 Manual Revision 1.5 released under public license. Corre-
sponds to the SLC1657 Core, REV: 2.0. Author: Silicore Corporation.

Technical Reference Manual 3 SLC1657

Contents

1.0 OVERVIEW.. 5
1.1 FEATURES OF THE SLC1657 ... 6
1.2 RECOMMENDED SKILL LEVEL.. 7
2.0 SYSTEM ARCHITECTURE... 9
2.1 CORE OVERVIEW ... 9
2.2 EXTERNAL ARCHITECTURE.. 11
2.3 INTERNAL ARCHITECTURE ... 16
3.0 PROGRAMMING REFERENCE... 27
3.1 REGISTER SET .. 29
3.2 RESET OPERATION ... 38
3.3 I/O PORT OPTIONS ... 39
3.4 TIMER/COUNTER & WATCHDOG OPERATION ... 41
3.5 POWER-DOWN OPERATION... 46
3.6 COMPATIBILITY WITH THE MICROCHIP PART ... 48
3.7 INSTRUCTION SET .. 50
4.0 VHDL SYNTHESIS AND TEST... 67
4.1 VHDL SIMULATION AND SYNTHESIS TOOLS ... 67
4.2 VHDL PORTABILITY.. 69
4.3 REQUIRED RESOURCES ON THE TARGET DEVICE ... 69
4.4 SOFT CORE INSTALLATION... 72
4.5 CORE INTEGRATION ... 73
4.6 VHDL REFERENCE BOOKS .. 77

Technical Reference Manual 4 SLC1657

5.0 HARDWARE (VHDL ENTITY) REFERENCE ... 79
5.1 ALULOGIC ENTITY ... 79
5.2 BINADDER ENTITY ... 81
5.3 BUC08NNP ENTITY.. 82
5.4 BUC11CPP ENTITY... 82
5.5 CLOCKDIV ENTITY ... 82
5.6 INDEXREG ENTITY ... 83
5.7 INSTRDEC ENTITY .. 83
5.8 INTRCONV ENTITY ... 90
5.9 MUX08X04 ENTITY.. 90
5.10 MUX08X08 ENTITY.. 91
5.11 MUX11X04 ENTITY.. 91
5.12 PORTSREG ENTITY ... 91
5.13 PRESCALE ENTITY.. 92
5.14 PROGCNTR ENTITY... 93
5.15 REG08CNN ENTITY ... 96
5.16 REG08CPN ENTITY .. 96
5.17 REG11CNN ENTITY ... 97
5.18 REG12CRN ENTITY.. 97
5.19 RESETGEN ENTITY ... 97
5.20 STATSREG ENTITY.. 99
5.21 TCOPTREG ENTITY ... 100
5.22 TIMRCNTR ENTITY ... 100
5.23 TIMRSYNC ENTITY ... 101
5.24 TOPLOGIC ENTITY .. 104
5.25 WATCHDOG ENTITY .. 104
6.0 IMPLEMENTATION ON THE XILINX SPARTAN 2 FPGA.. 107
6.1 EVALUATION KIT FOR XILINX SPARTAN 2 FPGA .. 108
6.2 THE XSP2EVAL EXERCISE... 111
6.3 USING THE EMULATION ROM (DOWNLOAD) CAPABILITY... 116
6.4 CREATING AN EMBEDDED PROM.. 118
6.5 VHDL ENTITY REFERENCE FOR XILINX SPARTAN 2 .. 120
7.0 IMPLEMENTATION ON THE ALTERA FLEX 10KE FPGA ... 129
7.1 EVALUATION KIT FOR ALTERA FLEX 10KE FPGA ... 130
7.2 THE AF10EVAL EXERCISE... 133
7.3 USING THE EMULATION ROM (DOWNLOAD) CAPABILITY... 138
7.4 CREATING AN EMBEDDED PROM.. 140
7.5 VHDL ENTITY REFERENCE FOR ALTERA FLEX 10KE... 142
8.0 IMPLEMENTATION ON THE AGERE ORCA 3L FPGA.. 150
8.1 EVALUATION KIT FOR AGERE ORCA 3L FPGA ... 151
8.2 THE AGO3EVAL EXERCISE ... 154
8.3 USING THE EMULATION ROM (DOWNLOAD) CAPABILITY... 160
8.4 CREATING AN EMBEDDED ROM.. 162
8.5 VHDL ENTITY REFERENCE FOR AGERE ORCA 3L ... 164
APPENDIX A – THE INTEL HEX FORMAT.. 172

APPENDIX B – GNU LESSER GENERAL PUBLIC LICENSE.. 174

APPENDIX C – GNU FREE DOCUMENTATION LICENSE ... 184

INDEX ... 192

Technical Reference Manual 5 SLC1657

1.0 Overview

The Silicore SLC1657 is an eight-bit RISC microcontroller. It is delivered as a VHDL1
soft core2 module, and is intended for use in both ASIC and FPGA type devices. It is
useful for microprocessor based embedded control applications such as: sensors, medical
devices, consumer electronics, automotive systems, telecommunications, military and
industrial controls.

The core is especially useful wherever there is limited circuit board space. As shown in
Figure 1-1, all applications can be integrated into a single FPGA or ASIC device, thereby
creating a very compact design. For example, very small sensor circuits can be created
with the core.

Figure 1-1. Create your own microcontroller with the SLC1657.

1 VHDL: VHSIC Hardware Description Language.
2 The term ‘soft core’ means that the microcontroller is delivered as VHDL source code. This must be synthesized by

the user into a usable microcontroller. This is opposed to ‘firm cores’ or ‘hard cores’, where the user is prohibited
from seeing or adjusting the internal architecture of the product. The SLC1657 is delivered in this way to (a) make
it more portable, (b) improve testability (and test creation) and (c) allow the user more flexibility in his/her design.

SLC1657
uC CORE

RAM ROM

User Defined
Circuit Area

FPGA or ASIC

I/O I/O

Your Application Goes

In here!

Technical Reference Manual 6 SLC1657

When implemented on an FPGA device, the SLC1657 offers a completely user-defined
microcontroller. This eliminates expensive NRE charges and lengthy lead times which
are common for semi-custom integrated circuits. The end user can completely control
the entire system integration process.

Furthermore, the core is useful for high volume applications. That’s because it is unusu-
ally compact, and can be produced inexpensively. It can also be combined with other
peripherals on the same device, thereby creating custom, single-chip microcontrollers.
This concept also allows the core to be used in devices with a wide variety of options
such as package type, temperature range and radiation hardening.

1.1 Features Of The SLC1657

• Eight-bit RISC microcontroller.

• Dual instruction and data buses with Harvard architecture.

• Fast operation...all microcontroller instructions (except branches) require one

clock cycle. Branch instructions require two clock cycles.

• Very compact design minimizes gate count.

• 24 input and 48 output I/O lines.

• General purpose, eight-bit timer/counter module.

• Power-down / sleep mode feature for low power applications.

• Instruction ROM: 2,048 x 12 bit. Can be configured as embedded ROM, or as

an emulation ROM for software development purposes.

• General purpose registers (RAM): 72 bytes.

• 32 op-code instructions with easy-to-use application software environment.

• Numerous application software tools are available. The SLC1657 is software

compatible with the industry standard PIC series of microcontrollers made by
Microchip Technology Inc. There are many software tools available from third-
party vendors. These include assemblers, ‘C’ compilers, simulators and fuzzy
logic tools.

• Microcontroller design written in the flexible VHDL hardware description lan-

guage. The SLC1657 is delivered as a ‘soft-core’, meaning that all VHDL

Technical Reference Manual 7 SLC1657

source code and test benches are supplied. This allows the user to ‘tweak’ the
design for a particular application. Complete documentation is also provided.

• Straightforward synchronous design simplifies system integration.

• Very simple timing constraint definition.

• The maximum operating speed is a function of the target device technology3.

1.2 Recommended Skill Level

Figure 1-2 shows the recommended skill (or experience) level required to operate and
synthesize the SLC1657. This microcontroller is one of the easiest to use on the market.
Users familiar with one or more microprocessor chips should be able to operate and pro-
gram the core with little or no problem. The user may find it helpful to purchase one or
more of the recommended books listed in Chapter 3. Furthermore, the user should be
able to find a wide variety of software examples on the internet and other sources. The
Parallax simulator, also described in Chapter 3, is an inexpensive and useful tool for
learning the instruction set.

EASY | INTERMEDIATE | ADVANCED

MICROCONTROLLER OPERATION
AND PROGRAMMING

0 YR 1 YR 2 YR

EASY | INTERMEDIATE | ADVANCED

VHDL SYNTHESIS
AND INTEGRATION

0 YR 1 YR 2 YR

Figure 1-2. Recommended experience level required to operate (program)
and synthesize (integrate) the SLC1657.

It is recommended that the user have some experience with VHDL syntax and synthesis
before attempting to integrate this core (or almost any other HDL core for that matter)
into an FPGA or ASIC. Most VHDL users report a fairly stiff learning curve on their
first project, so it’s better to have that experience before attempting to integrate the core.
Prior experience with one or two medium size VHDL projects should be sufficient. On
the other hand, some users may find the SLC1657 an excellent way to learn many of the
concepts in the VHDL language. Those users should find the integration experience re-
warding. A good way to learn about the core is to use one of the evaluation kits. For ex-

3 Typical operating speeds on FPGA parts are about 20 MHz (or 20 MIPS). Speeds are much higher for ASICs.

Technical Reference Manual 8 SLC1657

ample, if your target device is a Lucent FPGA, then the core can be synthesized and op-
erated on one of the Silicore evaluation boards.

Technical Reference Manual 9 SLC1657

2.0 System Architecture

The Silicore SLC1657 was designed with five major objectives. These were to create:

• A compact design...small enough to be used in both FPGA and ASIC devices.
• A fast design...capable of solving ‘real world’ computing problems.
• A portable design...one which can be used as a synthesizable VHDL core.
• A compatible design...with a variety of software development tools.
• A fast time-to-market design...with plenty of documentation and support.

To achieve these objectives, the SLC1657 was designed as an eight-bit RISC microcon-
troller. This allows it to meet the criteria for both a compact and a fast design.

Furthermore, a microcontroller type topology is used. The main difference between a
microcontroller and a microprocessor is the I/O interface: microcontrollers interface to
the outside world with I/O ports, and microprocessors use I/O buses. A microcontroller
topology is used because it is easier to integrate as an FPGA or ASIC core.

Furthermore, the SLC1657 has a large base of software tools. The core is instruction
compatible with other industry standard microcontrollers. Assemblers, simulators, ‘C’
compilers and fuzzy logic generators are available for that device. They are low cost,
and are available for a number of operating systems from a variety of software suppliers.

Finally, the SLC1657 was designed to facilitate fast time-to-market for the end user. Vir-
tually all design documentation for this product is available from Silicore Corporation,
including all VHDL source files and test benches. The product can also be bundled with
other services, such as design customization, integration and on-site training.

2.1 Core Overview

The SLC1657 uses a RISC, or reduced instruction set computer architecture. One advan-
tage of this architecture is that it uses an unencoded instruction stream. This means that
most of the control logic is embedded within the instruction itself. This eliminates much
of the decode logic required by CISC, or complex instruction set computer architectures,
which encode their instructions in an intermediate encoding scheme.

Another common feature of the RISC architecture is the use of separate instruction and
data buses. This is often called a Harvard Architecture, and alleviates the need for a
shared main bus. Shared buses can create bottlenecks (in terms of both speed and logic
size) because they pass both the instructions and data. Furthermore, they usually require
three-state buses, which tend to make them less portable as FPGA cores.

Technical Reference Manual 10 SLC1657

The SLC1657 is intended to solve ‘real world’ embedded computing problems. Several
popular features have been used in the core to support these applications. These include
embedded RAM, ROM, I/O ports, a general purpose timer/counter, a watchdog timer and
a power-down mode.

During normal use, the SLC1657 uses a 2,048 x 12 bit instruction ROM. In both FPGA
and ASIC devices the ROM is created from standard cells, which are usually supplied by
the manufacturer of the target device. This allows ROM to be integral to the target de-
vice, and eliminates the need for external parts. Also, in SRAM4 type FPGA devices the
ROM can be automatically loaded when the device is configured (during power-up).

An emulation ROM capability can also be used for application software development.
This is provided as an optional VHDL entity, and includes a parallel port download inter-
face. PC based download software and parallel port cable are provided with the evalua-
tion kit.

To use the software development environment, the core must be synthesized with an
emulation ROM core (which is provided with the kit). Once software development is
complete, the emulation core is replaced with the embedded ROM. The emulation ROM
can also be used in the target application. This is useful when used as a smart peripheral
to another computer.

The SLC1657 uses a segmented addressing architecture for the instruction memory. This
architecture uses four instruction memory banks, each having 512 x 12-bit memories.
This results in a total instruction capacity of 2,048 12-bit words. Two instruction bank
bits in the STATUS register select the current bank to use.

Register RAM also uses a segmented addressing scheme, allowing a total of 72, eight bit
general purpose registers. This is in addition to sixteen special and general purpose reg-
isters, which are available from all register banks.

The banked architecture is an upgrade from the SLC1655 predecessor. That processor
used a single bank of 512 words of memory. The size of the SLC1657 memories can be
reduced to make it code compatible with the SLC1655.

I/O on the SLC1657 is handled through a flexible interface with 24 input lines, 48 output
lines and three write strobes. These can be configured by the user in several modes. For
example they can be used as-is, they can be combined to produce 24 bi-directional three-
state lines, or they can connect to intermediate logic such as FIFO buffers.

The core has a general purpose timer/counter. This entity includes an eight-bit counter
and a programmable, eight-bit prescaler. The source of the timer/counter input can be
either from the internal clock [MCLK / 4] or from an external [TMRCLK] pin. The

4 SRAM: Static RAM

Technical Reference Manual 11 SLC1657

timer/counter is useful in many real-time applications. For example, it can be used for
time interval measurement and pulse counting.

The watchdog timer is popular in embedded control applications. When enabled, the
watchdog resets the microcontroller if the RWT instruction is not issued before the end of
a time-out period. Furthermore, the time-out period can be increased by routing the
watchdog through the timer/counter prescaler.

The SLC1657 has a power-down feature that allows it to reduce power consumption.
This is especially useful in low current (e.g. battery powered) applications. A special
PWRDN instruction causes the microcontroller to halt operation, thereby reducing cur-
rent consumption. The actual reduction in power depends upon the clock frequency and
quiescent current consumption of the target device5.

All of these features are controlled by a simple instruction set with a total of 32 op-codes.
These include add, subtract, increment, decrement, logical, loop and branch instructions.
A branch-to-subroutine and a small (two element) stack is also included in the core.

2.2 External Architecture

Figure 2-1 is a block diagram of the SLC1657 external architecture. This shows the
VHDL TOPLOGIC entity6, and illustrates what the microcontroller core looks like to the
rest of the FPGA or ASIC device.

The main body of the core is provided in the TOPLOGIC entity. This contains all of the
control logic (instruction decoder, registers, etc.) for the device. The user combines
TOPLOGIC with other entities to form a complete microcontroller with RAM, ROM and
I/O elements.

The RAM and ROM entities are not included7 in the TOPLOGIC core because the
VHDL synthesis standards do not handle these very well. Entity descriptions for these
are provided by the FPGA or ASIC vendor as ‘standard cells’. Furthermore, this allows
the user to choose between two ROM styles:

• Emulation ROM8. This allows application code to be downloaded and de-

bugged over a PC (Centronics style) parallel port cable. It is very useful for ap-
plication software development.

5 On the SLC1655 ORCA FPGA evaluation board, the power reduction is about 90%.
6 The term ‘entity’ is VHDL jargon for a subassembly or component. It is used throughout this manual as

a way of describing the various parts of the microcontroller.
7 Sample entities for specific FPGA target devices are included with the SLC1657 development kits.
8 PC-compatible download software and cable are provided with the SLC1657 evaluation kit.

Technical Reference Manual 12 SLC1657

• Embedded ROM9. The embedded ROM is fixed, and cannot be changed. Once

the application software has been designed and tested, it is converted to embed-
ded ROM cells, and the core is re-synthesized.

Separate RAM and ROM elements also makes testing the part much easier, especially in
ASIC applications. ASICs tend to have more rigorous testability requirements than re-
configurable FPGA parts. That’s because ASICs tend to be screened during the die fab-
rication process, whereas reconfigurable FPGAs can be 100% pre-tested. The architec-
ture of the SLC1657 allows the core, the RAM and the ROM to be tested separately on
the die.

The I/O elements are also provided by the user. Since the core can be used in a large va-
riety of ways, it is better if the user provides these elements. For example, some applica-
tions require that the I/O’s be used as uni-directional pins (i.e. separate input and output
lines), while some require bi-directional, three-state I/O pins.

The external signal descriptions for the core are shown in Table 2-1.

Table 2-1. SLC1657 external signal description.

Signal Name
Input (I)

Output (O)

Signal Description
MCLK I Microcontroller (master) clock.
PCLK* I Program clock / emulation ROM (optional).
PCOUT0-2(7..0) O Port control output.
PDAT* I Program data / emulation ROM (optional).
PLCH* I Program latch / emulation ROM (optional).
PROG* I Program enable / emulation ROM (optional).
PTIN0-2(7..0) I I/O PORT input.
PTOUT0-2(7..0) O I/O PORT output.
PTSTB0-2 O Port output strobe.
RESET I Reset (external).
SLEEP O Power-down / sleep mode.
TMRCLK I External timer/counter clock source.
Note: (*) active low signal.

9 Software to create a ROM database is included with the SLC1657 development kit.

Technical Reference Manual 13 SLC1657

Figure 2-1. SLC1657 external architecture block diagram.

PTIN0(7..0)

PTOUT0(7..0)

PTSTB0

PCOUT0(7..0)

PTOUT1(7..0)

PCOUT1(7..0)

PTOUT2(7..0)

PCOUT2(7..0)

PTSTB1

PTIN1(7..0)

PTSTB2

PTIN2(7..0)

'0'

TMRCLK

RESET

MCLK

PRESET

SLC1657
TOPLOGIC
VHDL
ENTITY

TESTIN TESTOUT

MCLK

EADR(6..0)

EWERAM

EALU(7..0)

GP(7..0)

EMCLK_16

ROM(11..0)

EPRC(10..0)

OPTIONAL
3-STATE
I/O's

SLEEP

OP
TI
ON
AL
 P
RO
-

GR
AM
MI
NG
 P
IN
S.

PLCH*

PROG*

PCLK*

PDAT*
RAM/ROM

2,048 x 12

72 x 8-BIT
RAM

CE

ADR

DOUTDIN

DOUTADR

Technical Reference Manual 14 SLC1657

2.2.1 MCLK Signal

The [MCLK] signal synchronizes the internal activity of the core. Its frequency is de-
pendent upon the target device (FPGA, ASIC etc.), and must be evaluated by the user
during VHDL synthesis. In most cases the clock may be operated down to 0 Hz, and up
to the maximum frequency limit of the target device technology. The duty cycle of the
clock is not particularly important, as only the positive going edge of [MCLK] is used. A
standard 60/40 duty cycle is adequate for this application.

2.2.2 PCLK* Signal

The [PCLK*] signal is an optional programming clock. It synchronizes the [PDAT*]
signal when an emulation ROM entity is used. [PCLK*] is an active low signal.

2.2.3 PCOUT0-2(7..0) Signals

PCOUT0(7..0), PCOUT1(7..0) and PCOUT2(7..0) are eight-bit port control output buses.
They can be used as general purpose output ports. They are accessed by writing to the
port control registers PC0, PC1 and PC2 (using the MOVP instruction).

When the SLC1657 is configured to operate as part of a three-state bi-directional I/O
port, then these buses are generally used to control the three-state operation of the port.

2.2.4 PDAT* Signal

The [PDAT*] signal is an optional programming data pin that is used with an emulation
ROM capability. [PDAT*] is an active low signal.

2.2.5 PLCH* Signal

The [PLCH*] signal is an optional programming latch pin. It is used to latch data into
the emulation ROM. [PLCH*] is an active low signal.

Technical Reference Manual 15 SLC1657

2.2.6 PROG* Signal

The [PROG*] signal is an optional programming enable pin. When asserted, [PROG*]
places the core into the emulation ROM mode. It has the same effect as the external [RE-
SET] signal. [PROG*] is an active low signal.

2.2.7 PTIN0-2(7..0) Signals

PTIN0(7..0), PTIN1(7..0) and PTIN2(7..0) are general purpose input port buses. Input
port data is accessed by reading the PORT0, PORT1 and PORT2 registers located at ad-
dresses 0x05, 0x06 and 0x07 respectively.

2.2.8 PTOUT0-2 Signals(7..0)

PTOUT0(7..0), PTOUT1(7..0) and PTOUT2(7..0) are general purpose output port buses.
Output port data is accessed by writing to the PORT0, PORT1 and PORT2 registers lo-
cated at addresses 0x05, 0x06 and 0x07 respectively.

2.2.9 PTSTB0-2 Signals

PTSTB0, PTSTB1 and PTSTB2 are output port strobes. They can be used to inform ex-
ternal entities that new data is available at the PTOUT0(7..0), PTOUT1(7..0) and
PTOUT2(7..0) buses (respectively). Each strobe becomes active for one [MCLK] edge
after writing to the PORT0, PORT1 or PORT2 output ports.

2.2.10 RESET Signal

The [RESET] signal resets all internal circuits. It must be asserted for at least two
[MCLK] cycles.

2.2.11 SLEEP Signal

The [SLEEP] signal, when active, indicates that the core has been placed into power-
down mode. External entities can use [SLEEP] to turn themselves off, thereby lowering
power consumption. This function is especially useful in battery powered applications.

Technical Reference Manual 16 SLC1657

2.2.12 TMRCLK Signal

The [TMRCLK] signal is the external input to the timer/counter. This signal can be op-
erated in synchronous or asynchronous modes (in relation to the [MCLK] pin).

When operated asynchronous mode, the period of the [TMRCLK] signal must exceed the
period of [MCLK]. This means that the maximum frequency of the input must be less
than 1/2 that of [MCLK]. Stated another way, the [TMRCLK] input must be high for at
least one positive [MCLK] edge, and low for another.

In synchronous mode, the [TMRCLK] signal is sampled at every rising edge of [MCLK].
In this case the user must constrain the external design so that [TMRCLK] meets the
setup and hold times of the synchronizer in the TIMRCNTR entity. Refer to the
TIMRCNTR entity for more details.

2.3 Internal Architecture

The SLC1657 is a register based microcontroller with the internal register set shown in
Table 2-2. There are four types of registers: implicit, special purpose, shared general
purpose and banked general purpose.

2.3.1 Implicit Registers

The implicit registers include the accumulator (ACCUM), port control (PC0-2),
timer/counter option (TCO) control ports and stack (STACK1-2) registers. They are
called ‘implicit’ registers because they are implicitly addressed by an instruction. For
example, the MOVT instruction moves the accumulator to the timer/counter option regis-
ter (TCO). The accumulator is a read/write register. The PC0-2 and TCO registers are
write-only types.

The stack registers are part of the ‘PROGCNTR’ entity, and are used to store and retrieve
the return address during branch-to-subroutine (BSR) and return (RET) instructions.
There are only two stack levels, so the user must monitor stack usage accordingly. At
first this may seem like an unusually small stack, but they are sufficient.

The SLC1657 follows the industry convention whereby two stack levels are supported.
Some application software tools will also support additional stack levels. For example,
the ‘CC5X ‘C’ compiler from B Knudsen Data will support additional stack levels if they
are implemented in hardware. However, this capability is left to the user to implement.

Technical Reference Manual 17 SLC1657

Table 2-2. Register set (abbreviated).

Register

Address

Bank
INDEX(6..5)

Regs

R/W Access

ACCUM Implicit - 1 R/W
PC0 Implicit - 1 W
PC1 Implicit - 1 W
PC2 Implicit - 1 W
TCO Implicit - 1 W

STACK1 Implicit - 1 R/W
STACK2 Implicit - 1 R/W

INDIRECT 0x00 (*) All (0-3) 1 R/W
TIMRCNTR 0x01 (*) All (0-3) 1 R/W
PROGCNTR 0x02 (*) All (0-3) 1 R/W

STATUS 0x03 (*) All (0-3) 1 R/W
INDEX 0x04 (*) All (0-3) 1 R/W
PORT0 0x05 (*) All (0-3) 1 R/W
PORT1 0x06 (*) All (0-3) 1 R/W
PORT2 0x07 (*) All (0-3) 1 R/W

SHARED, GEN PURPOSE 0x08 - 0x0F (*) All (0-3) 8 R/W
BANKED, GEN PURPOSE 0x10 – 0x1F 0 16 R/W
BANKED, GEN PURPOSE 0x30 – 0x3F 1 16 R/W
BANKED, GEN PURPOSE 0x50 – 0x5F 2 16 R/W
BANKED, GEN PURPOSE 0x70 – 0x7F 3 16 R/W
(*) Indicates shared by accessing the lower 16 bytes of each bank.

2.3.2 Special Purpose Registers

The special purpose registers (0x00 - 0x07) are located in the data address space, and ac-
cess several dedicated functions. For example, reading the register at address 0x01 re-
turns the current value of the TIMRCNTR register. All of the special purpose registers
are read/write types.

2.3.3 General Purpose Registers

The general purpose registers can be used as RAM. They are all read/write types, and are
bit-addressable. There are two types of general purpose registers: shared and banked.

There are eight shared general purpose registers. These are accessed between addresses
0x08 and 0x0F, regardless of the state of the register bank selection bits in the INDEX
register.

There are four groups of banked general purpose registers, each containing sixteen bytes.
These are always accessed through register addresses 0x10 – 0x1F. However, the group
(or bank) of registers is selected by bits RB1 and RB0 in the STATUS register. For ex-

Technical Reference Manual 18 SLC1657

ample, if RB1:RB0 are set at ‘10’, then accesses between 0x10 – 0x1F will all ways read
or write to the BANKED GENERAL PURPOSE REGISTERS in bank 2.

2.3.4 Interrupts

The SLC1657 does not support interrupts. Polling techniques should be used.

2.3.5 Internal Operation

The internal operation of the SLC1657 is shown in Figure 2-2. This is an abbreviated
diagram, but it does show the general relationship between the parts of the microcontrol-
ler.

Figure 2-2. Internal architecture (abbreviated).

IN
ST
RU
CT
IO
N
DE
CO
DE
R

CETMR

CEIDX

MCLK

MCLK

MCLK

CEPTN

CETMR

CEIDX

CEACC

CEPCN

CETCO

INDEX

PORT0-2

TIMRCNTR

ROM

MCLK

MCLK

WERAM

CESTA

CEPRC

WERAM

CESTA

CEPTN

MCLK

CEPRC

STATUS

GEN PURPOSE
RAM

PROGCNTR

ACCUM

PC0-2

CETCO

CEPCN

CEACC

TCO
MCLK

MCLK

MCLK

ALU

Technical Reference Manual 19 SLC1657

A program counter provides an address for the instruction ROM. The generation of this
address causes an instruction to be fetched, and read by the instruction decoder. The in-
struction decoder then performs the operation.

Every instruction (except branches) is completed in a single clock cycle. The internal
operation of the core is quite simple. After the rising edge of every clock, the output
from a single register is routed through the ALU, which operates on the data. The output
from the ALU is then latched into one of the registers. The source register, ALU func-
tion and destination register is dictated by the current instruction being executed. The
instruction decoder controls this activity.

During every cycle the following operations are performed:

1) The program counter generates a new address. The address generated by the pro-
gram counter actually reflects the instruction following the current instruction.
This is called a pre-fetch address, and compensates for slow ROMs. During two-
cycle branch instructions (BSR and RET) the current address must be flushed
from the instruction queue, thereby requiring a second clock cycle. This activity
is also called pipelining.

2) A 12-bit instruction op-code is fetched from ROM.

3) The instruction decoder reads the instruction, determines the source register, and

routes its contents to the arithmetic logic unit (ALU). At this time the instruction
decoder also informs the ALU what type of operation needs to be performed.

4) The ALU operates on the data. In some cases the accumulator, or data contained

within the instruction itself, is used. For example, during the ADD R,D instruc-
tion the contents of a register is added to the accumulator.

5) The result of the operation is stored in the accumulator or the register, depending

on the addressing mode of the instruction. The instruction decoder determines
where to place the data.

6) The next cycle begins at step (1).

2.3.6 Instruction Pipeline Operation

As mentioned above, the instruction fetch mechanism works as a pipeline. Figure 2-3
shows how the pipeline works on a sample set of instructions. During the first clock cy-
cle (after reset), the instruction pipeline is flushed, and the first instruction (MOVI) is
fetched. During the second clock cycle, the first instruction is executed, and the second
instruction (MOVA) is fetched. This continues until a branch instruction (BRA) is
reached.

Technical Reference Manual 20 SLC1657

During the branch-to-subroutine (BSR) operation (cycle 4), the instruction following
‘BSR’ will be fetched, but it will not be executed. During cycle 5 the extra instruction is
flushed from the pipeline, and instruction 10 (the first instruction of the subroutine) will
be fetched. During cycle 6 the first instruction of the subroutine is executed.

As you can see, all branches require a second clock cycle to ‘flush’ the instruction pipe-
line.

EXECUTE 2
FETCH 3

CYCLE 3CYCLE 1

FLUSH AUTO
FETCH 1ACTIVITY

MCLK

CYCLE 2

EXECUTE 1
FETCH 2

LAB1

LAB2

BSET R,B

ADD R,D

.

.

.

MOV R,D

MOVA R

BSR LAB2

START MOVI V

CYCLE 4 CYCLE 5
(FLUSH)

; INSTR 10

; INSTR 4 (UNUSED)

; INSTR 11

EXECUTE 3
FETCH 4

.

.

.

; INSTR 3

; INSTR 2

FLUSH 4
FETCH 10

CYCLE 6

EXECUTE 10
FETCH 11

; INSTR 1

Figure 2-3. Instruction pipeline operation.

2.3.7 Program Memory

Figure 2-4 shows how the program memory (instruction ROM) is organized. The pro-
gram memory is 2,048 words long, and 12-bits wide. It is split into four banks, each hav-
ing 512 words of memory. The SLC1657 core uses the banking technique because the
architecture has a 12-bit instruction word, which is too short to support program memory
addressing longer than nine bits.

Technical Reference Manual 21 SLC1657

Figure 2-4. Program memory organization.

The SLC1657 core is based upon a smaller device called the SLC1655. The earlier ver-
sion only supported 512 words of program memory, and was upgraded to support four
times the size of the previous memory. To create a larger memory area, the concept of
‘banking’ is used10.

Program memory banking in the SLC1657 is accomplished with two instruction bank
select bits IB0 and IB1. These are located in the STATUS register, and determine the
upper two bits of program memory. These two bits are configured under software con-
trol, and are used during the branch (BRA) instruction, the branch-to-subroutine (BSR)
instruction and during an update of the PROGCNTR register. For more information,
please refer to the section describing the program counter (below).

2.3.8 Reset Instruction

After all resets the instruction pipeline is flushed, and the program counter is forced to
address 0x7FF. This causes the instruction at the top of memory (the ‘RESET instruc-
tion’) to be fetched. Generally, this address is programmed with a branch (BRA) instruc-
tion, with the branch address being the starting point of the program. However, if a NOP
instruction is placed at this address, then the program counter will roll over to address
zero.

10 The banking capability is very similar to the ‘mode bit’ described in Tracy Kidder’s Pulitzer prize winning book:

The Soul of a New Machine. There, Kidder describes the development of the MV8000 Eagle computer at Data
General Corporation in the late 1970’s. The mode bit played a pivotal role in the development of that computer sys-
tem.

RESET INSTRUCTION

0x000

0x0FF
0x100

0x1FF
PROGRAM MEMORY

BANK 0
IB1:IB0 = 00

0x200

0x2FF
0x300

0x3FF
PROGRAM MEMORY

BANK 1
IB1:IB0 = 01

0x400

0x4FF
0x500

0x5FF
PROGRAM MEMORY

BANK 2
IB1:IB0 = 10

0x600

0x6FF
0x700

0x7FF
PROGRAM MEMORY

BANK 3
IB1:IB0 = 11

BANK CENTER ADDRESS
(SEE TEXT)

Technical Reference Manual 22 SLC1657

The address of the reset instruction can be changed by modifying the hardware. This is
advantageous if less than 2,048 words of program memory are used. For example, if only
512 words are needed, then the reset instruction can be moved to address 0x1FF. For
more information please refer to the PROGCNTR entity description located elsewhere in
this manual.

2.3.9 Program Counter Operation

The program counter generates the address of the instruction that is fetched from mem-
ory.

After a hardware reset, the program counter is forced to 0x7FF. This is the address of the
reset instruction.

During normal (non-branching) operations, the program counter increments at the end of
every cycle.

During branch (BRA) instructions, the program counter is preloaded with a new, 11-bit
address. This is shown in Figure 2-5(a). However, the ‘BRA’ instruction itself only sup-
plies nine of the eleven address bits. The two additional bits are copied from instruction
bank select bits ‘IB0’ and ‘IB1’, which are located in the STATUS register. These two
bits are concatenated with the nine bits in the instruction word to form a complete, 11-bit
address. The value is then loaded into the program counter which causes the program to
jump to a new location. The instruction pipe is flushed during all branching instructions.

During branch-to-subroutine (BSR) instructions, the current (11-bit) address is pushed
onto the stack. A new address is then loaded into the program counter, thereby causing
program execution to branch to the subroutine address. This is shown in Figure 2-5(b).
The ‘BSR’ instruction itself only supplies eight of the eleven address bits. Two addi-
tional bits are copied from instruction bank select bits ‘IB0’ and ‘IB1’, and a third bit is
forced to zero. These three bits are concatenated with the eight bits in the instruction
word to form a complete, 11-bit address. The value is then loaded into the program
counter which causes the program to jump to a new location.

Since bit 8 is forced to zero during the ‘BSR’ instruction, it also follows that all subrou-
tines must reside in the lower half of a program memory bank. The lower memory is
bounded by the ‘RAM CENTER ADDRESS’ shown in Figure 2-4.

When operating near the end of an instruction bank, it is important to remember that the
program counter will roll over from one bank to the next. For example, after fetching a
non-branching instruction at address 0x7FF the program counter will roll over to 0x200.

Technical Reference Manual 23 SLC1657

Figure 2-5. Program counter operation.

PROGRAM COUNTER
PRELOAD VALUE

IB
1

IB
0

'BRA' INSTRUCTION
(V = BRANCH ADDRESS)

0

VVVVVVVVV11 0

8

VVVVVVVVVIB
0

IB
1

010

STATUS REGISTER
BITS IB1:IB0

56

(A) PROGRAM COUNTER PRELOAD ON 'BRA' INSTRUCTION.

PROGRAM COUNTER
PRELOAD VALUE

IB
1

IB
0

'BSR' INSTRUCTION
(V = SUBROUTINE ADDR)

0

VVVVVVVV101 0

7

VVVVVVVV0IB
0

IB
1

010

STATUS REGISTER
BITS IB1:IB0

56

(B) PROGRAM COUNTER PRELOAD ON 'BSR' INSTRUCTION.

0BIT-8 SET TO ZERO

PROGRAM COUNTER
PRELOAD VALUE

IB
1

IB
0

SOURCE REGISTER
('V' = DATA)

0

VVVVVVVV

7

VVVVVVVV0IB
0

IB
1

010

STATUS REGISTER
BITS IB1:IB0

56

(C) PROGRAM COUNTER PRELOAD WHEN WRITING TO THE PROGCNTR REGISTER.

0BIT-8 SET TO ZERO

Technical Reference Manual 24 SLC1657

The stack operates like a FILO (first-in, last-out) memory, so that during return-from-
subroutine (RET) instructions the oldest stack value is preloaded into the program coun-
ter, and the instruction pipeline is flushed. This is shown in Figure 2-6. Subroutines can
be called from anywhere in memory because an 11-bit return address is always stored on
the stack.

Figure 2-6. Stack operation.

The program counter can also be preloaded by most instructions. This is very useful for
relative branch (lookup) tables. Since the program counter can only be preloaded with an
8-bit value from the instruction word, the operation works much like the ‘BSR’ instruc-
tion (i.e. the bits are concatenated in a similar way). This also means that relative branch
tables must reside in the lower half of memory. This operation is shown in Figure 2-5(c).

2.3.10 Register Memory

The SLC1657 register memory is broken up into four banks. The register bank is se-
lected by modifying the two register bank selection bits RB0 and RB1 (5 and 6) in the
INDEX register.

The four register banks are shown in Figure 2-7. The lower sixteen registers in each
bank all map back to BANK 0. The upper sixteen general purpose registers are accessed
only from the selected bank

ADDRESS

11 BITS

0x000

D11

0x7FF

12 BITS

DATA

RESET INSTRUCTION

PROGRAM
MEMORY

D00

STACK1FILO
11-bit STACK2

PROGRAM COUNTER

PROGRAM COUNTER
PRELOAD VALUE

PRC10 PRC00

Technical Reference Manual 25 SLC1657

Figure 2-7. Register banking.

When using indirect addressing, register addresses are set up normally in the INDEX
register. Subsequent accesses through the INDIRECT register will result in a read or
write to the correct register bank.

When using direct addressing, the register number contained in the instruction is con-
catenated with bits RB1:RB0 in the INDEX register. For example, if a ‘MOV 0x10,A’
instruction is executed, then the actual register moved to the accumulator will depend
upon the state of the RB1:RB0 bits in the INDEX register. If both bits are zero, then the
value at register 0x10 will be moved to the accumulator. If RB1:RB0 is ‘01’, then the
value at address 0x30 will be moved to the accumulator.

INDIRECT

TIMRCNTR

PROGCNTR

STATUS

INDEX

PORT0

PORT1

PORT2

SHARED
GENERAL
PURPOSE

BANKED
GENERAL
PURPOSE

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x0F

0x10

0x1F

BANKED
GENERAL
PURPOSE

0x30

0x3F

BANKED
GENERAL
PURPOSE

0x50

0x5F

BANKED
GENERAL
PURPOSE

0x70

0x7F

0x20 0x40 0x60

0x2F 0x4F 0x6F

ACCESSES
MAPPED
BACK
TO

BANK 0

ACCESSES
MAPPED
BACK
TO

BANK 0

ACCESSES
MAPPED
BACK
TO

BANK 0

00 01 10 11

FROM INDEX REGISTER

0123456

RB1 RB0

- REGISTER BANK (RB1:RB0) -

0123456

RB1 RB0

REGISTER
NUMBER
WITHIN
BANK

REGISTER
NUMBER
WITHIN
BANK

REGISTER
BANK

REGISTER
BANK

FROM
INDEX
REG

FROM
INSTRUCTION

WORD

- REGISTER WITHIN BANK -
INDIRECT ADDRESSING DIRECT ADDRESSING

Technical Reference Manual 26 SLC1657

2.3.11 Timer/Counter

A timer/counter functional module can be accessed through the timer/counter
(TIMRCNTR) and timer/counter option (TCO) registers. The timer/counter is a general
purpose ‘up-counter’ which can be configured to operate off an external or an internal
clock. Refer to the timer/counter register descriptions for more details.

Technical Reference Manual 27 SLC1657

3.0 Programming Reference

The SLC1657 has a simple (yet remarkably powerful) instruction set with a total of 32
op-codes. These include add, subtract, increment, decrement, logical, loop and branch
instructions.

The SLC1657 has a large base of software tools. The core is instruction compatible with
the PIC16C57, a microcontroller made by Microchip Technology Inc. of Chandler, AZ
(USA). Assemblers, simulators, ‘C’ compilers and fuzzy logic generators are available
for that device. They are low cost, and are available for a number of operating systems
from a variety of suppliers. A partial list of tool and book suppliers are:

• Assemblers / simulators:

microEngineering Labs, Inc.
Box 7532
Colorado Springs, CO 80933
TEL: 719.520.5323
URL: www.melabs.com

Microchip Technology, Inc.
2355 West Chandler Blvd.
Chandler, AZ USA 85224
TEL: 602.786.7200
URL: www.microchip.com

Parallax, Inc.
3805 Atherton Road, #102
Rocklin, CA USA 95765
TEL: 916.624.8333
URL: www.parallaxinc.com

Technical Reference Manual 28 SLC1657

• ‘C’ compilers:

B. Knudsen Data (BKD)
Trondheim, Norway
URL: www.bknd.com

Custom Computer Services, Inc.
Box 2452
Brookfield, WI 53008
TEL: 262.797.0455
URL: www.ccsinfo.com

Hi-Tech Software LLC
URL: www.htsoft.com

• Fuzzy logic Compilers:

Inform Software Corporation
2001 Midwest Road
Oak Brook, IL USA 60523
TEL: 630.268.7550
URL: www.fuzzytech.com

• Introductory reference books11:

Easy PIC’n
PIC’n Up The Pace
David Benson
SQUARE 1; P.O. Box 501; Kelseyville, CA USA 95451
e-mail: sqone@pacific.net
URL: www.sq-1.com

Design with PIC Microcontrollers
John B. Peatman
Prentice Hall, 1997

Programming and Customizing the PIC Microcontroller
Michael Predko
McGraw-Hill Book Company, 1997

11 This is a partial list. These books can be ordered through your local bookstore, or on the internet from the Amazon

bookstore at <www.amazon.com>. The Amazon website also has book reviews from other users.

Technical Reference Manual 29 SLC1657

3.1 Register Set

A detailed description of the SLC1657 register set is shown in Table 3-1.

3.1.1 Accumulator (ACCUM)

The accumulator (ACCUM) is an implicit register, and is used as a temporary storage
location for operands. The contents of the accumulator is undefined at power-up, and is
unaffected by reset. Implicit registers are those that are implicitly defined in an instruc-
tion word.

3.1.2 Port Control Registers (PC0-2)

The port control registers (PC0, PC1 and PC2) are implicit registers, and determine the
state of the associated PCOUT0-2 output pins. If a bit is set to one, then the respective
pin is asserted. If a bit is set to zero, the pin is negated. Implicit registers are those that
are implicitly defined in an instruction word.

Technical Reference Manual 30 SLC1657

Table 3-1. SLC1657 register set.

The port control registers are write-only, and can only be accessed with the MOVP in-
struction. The op-code for the MOVP instruction maps registers PC0, PC1 and PC2 into
implicit address spaces 5, 6 and 7 respectively.

After reset, the contents of PC0-2 are set to one. This is an important feature when the
I/O ports are used in the bi-directional three-state mode. In this mode the I/O ports are
placed in their high impedance states after reset since it is not known if the ports are con-
nected to the inputs or outputs of external logic.

PT1(4)

PT2(4)

PT0(4)

PC2(4)

PC1(4)

PC0(4)

'U': UNCHANGED AFTER ANY RESET; 'T': CHANGED DEPENDING UPON TYPE OF RESET (REFER
TO REGISTER DESCRIPTION FOR DETAILS); 'R/W': READ/WRITE REGISTER; 'W': WRITE ONLY
REGISTER; '-': UNDEFINED; HATCHED AREAS INDICATE UNUSED BIT.

BANK NUMBER IS SELECTED BY BANK SELECT BITS BS1:BS0 IN STATUS REGISTER.

(*) ASTERISK INDICATES ADDRESS IS A FUNCTION OF BANK SELECT BITS BS1:BS0.
FOR EXAMPLE, WHEN BS1:BS0 IS '00', THEN THE STATUS REGISTER ONLY APPEARS AT
ADDRESS 0x03. HOWEVER, WHEN BS1:BS0 IS '10', THEN THE STATUS REGISTER
APPEARS AT ADDRESS 0x03 AND 0x43. SEE TEXT FOR DETAILS.

PORT2 0x07 (*) PT2(6)PT2(7)R/W PT2(5)

SHARED

PURPOSE

NOTES:

0x0F (*)

0x08 (*) R/W

R/W

D7

D7

D6

D6

D5

D5

ADDRESS

PORT1

INDIRECT

TIMRCNTR

PROGCNTR

STATUS

INDEX

PORT0

REGISTER

ACCUM

0x00 (*)

0x06 (*)

0x05 (*)

0x04 (*)

0x03 (*)

0x02 (*)

0x01 (*)

TCO

PC0

PC1

PC2

R/W D7

PT1(7)R/W

PT0(7)

R/W

R/W

R/W

R/W

R/W

D7

D7

W

PC0(7)

PC1(7)

PC2(7)

7
R/W

R/W

W

W

W

D7

D6 D5

PT1(6)

PT0(6)

PT1(5)

D6

D6

D5

D5

PT0(5)

PC2(6)

PC1(6)

PC0(6)

TCS

6

PC0(5)

PC1(5)

PC2(5)

5

D5D6

WDT

PT2(0)PT2(2)PT2(3) PT2(1) UU U U U U U U

D4

D4

D3

D3

D2

D2

D1

D1

U

U

D0

D0

U U U U U

U U U U U

U

U

U

U

PT1(0)

PT0(0)

PS0

PC0(0)

PC1(0)

PC2(0)

BIT NUMBER

PT1(2)

PT0(2)

PC0(2)

PC1(2)

PC2(2)

D4 D3

PT1(3)

D4

D4

D4

D3

D3

D3

TO PD

PT0(3)

TSE ASGN

4

PC0(3)

PC1(3)

PC2(3)

3

D3D4

D2 D1

PT1(1)

D2

D2

D2

D1

D1

D1

Z NC

PT0(1)

PS2

D2

PS1

2

PC2(1)

PC1(1)

PC0(1)

1

D1

RESET VALUE

U

U

U

-

U

U

U

D0

D0

D0

D0

C

U U U U U

U U

0 0 T T

- - - - -

1 1 1 1 1 1

U U U U U

U U U U U

1 U U

-

D0

0

1 11 1

1

1

1

1 1

1 1

1 1

1

1

1

1

1

1

U U U U U

1

1

1

- U

U

U

U

U

U

U

- -

1 1

U U

U U

U

1

1

1

1

1

1

1

1

U

IB0IB1

0x1F

0x10 R/W

R/W

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

U

U

D0

D0

U U U U U

U U U U U

U

U

U

U

GENERAL

BA
NK
 0

BANKED

PURPOSE

0x3F

0x30 R/W

R/W

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

U

U

D0

D0

U U U U U

U U U U U

U

U

U

U
GENERAL

BA
NK
 1

0x5F

0x50 R/W

R/W

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

U

U

D0

D0

U U U U U

U U U U U

U

U

U

UBA
NK
 2

0x7F

0x70 R/W

R/W

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

U

U

D0

D0

U U U U U

U U U U U

U

U

U

UBA
NK
 3

RB0(D5)

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

IMPLICIT

RB1(D6)

Technical Reference Manual 31 SLC1657

When the port control outputs are used in bi-directional three-state mode, each bit is gen-
erally assigned to the corresponding pin in the PTOUT0-2 buses. If the PC0-2 register
bit is set to one, then the respective pin is placed in high impedance (three-state) mode.
If the bit is set to zero, then the pin is enabled as an output.

For more information about the PCO-2 registers, please refer to the I/O Port Options sec-
tion below.

3.1.3 Timer/counter Option Register (TCO)

The timer/counter option register (TCO) is an implicit register, and selects the
timer/counter, prescaler and watchdog enable options. Table 3-2 shows how to program
the register. The timer/counter option register is ‘write-only’, and can only be accessed
with the MOVT instruction. All of the bits of the timer/counter option register, except
for the WDT bit, are set to ‘1’ after the assertion of any reset. The WDT bit is unaffected
by reset.

Bit D7 is unused and reserved for future use. It should be set to zero for forward com-
patibility.

Bit D6 is the watchdog timer enable bit (WDT), and causes the watchdog to be enabled
or disabled. When set to one, the watchdog is enabled. When set to zero, the watchdog
is disabled. Reset does not affect the bit.

Bit D5 is the timer/counter select bit (TCS), and determines the signal source for the
timer/counter. When set to a one, the source of the timer/counter is the external
[TMRCNT] pin. When set to a zero, the source of the timer/counter is the microcontrol-
ler clock divided by four (i.e. [MCLK] / 4).

Technical Reference Manual 32 SLC1657

Table 3-2. Timer/counter option register (TCO).

Bit No. Mnemonic Description

D7 - Unused/reserved (set to zero).

D6

WDT
Watchdog timer enable:
1: Watchdog enabled
0: Watchdog disabled

D5

TCS

Timer/counter clock source:
1: TMRCNT
0: Internal clock [MCLK / 4]

D4

TSE

TMRCNT edge select:
1: Positive edge
0: Negative edge

D3

ASGN

Prescaler assignment:
1: Assign to watchdog timer
0: Assign to timer/counter

D2, D1, D0 PS2, PS1, PS0 Prescaler divider rate.

Bit D4 is the TMRCNT edge select (TSE), and determines which edge increments the
timer/counter. It is only used when the clock source is the external TMRCNT signal (i.e.
TCS = ‘1’). When set to a one, the positive edge is used. When set to zero, the negative
edge is used.

Bit D3 is the prescaler assignment (ASGN), and determines whether the prescaler is as-
signed to the timer/counter or watchdog circuits. The prescaler cannot be assigned to
both. When set to a one, the prescaler is assigned to the watchdog timer. When set to a
zero, the prescaler is assigned to the timer/counter.

It is recommended that the watchdog timer be cleared before changing the prescaler as-
signment bit (by executing a ‘RWT’ instruction). This will prevent an unwanted watch-
dog time-out.

Bits D2, D1 and D0 are Prescaler select bits (PS2, PS1 and PS0), and determine the divi-
sion ratio of the prescaler. They should be set as shown in Table 3-3. The prescaler is
essentially a divide-by-N counter, where ‘N’ is the value selected by PS2, PS1 and PS0.

Also note that there are two prescaler division ratios listed: one for the TIMRCNTR and
one for the watchdog. This is because the prescaler operates as a binary up counter.
When attached to the TIMRCNTR, the prescaler generates an output clock which is used
as a clock source to the TIMRCNTR counter. When attached to the watchdog, the pre-
scaler provides a pulse ‘level’ which triggers the watchdog. [Stated another way, the
TIMRCNTR relies on the edges that the prescaler supplies, whereas the watchdog relies
on the output level from the prescaler].

Technical Reference Manual 33 SLC1657

Table 3-3. Prescaler select bits.

PS2

PS1

PS0

TIMRCNTR
Prescaler

Division Ratio

WATCHDOG
Prescaler

Division Ratio
0 0 0 2 1
0 0 1 4 2
0 1 0 8 4
0 1 1 16 8
1 0 0 32 16
1 0 1 64 32
1 1 0 128 64
1 1 1 256 128

For example, if the positive edge of the [TMRCNT] signal is used (TCS = ‘1’ and TSE =
‘1), the prescaler is assigned to the timer/counter (ASGN = ‘0’), a divide-by-8 prescaler
is needed and the watchdog timer is disabled, then the TCO register should be set to
0x32.

For more information on the TCO register please refer to the Timer/counter Operation
section below.

3.1.4 Indirect Register (INDIRECT)

The indirect register (INDIRECT) causes reads or writes to the current address loaded in
the INDEX register. It is used for software ‘pointers’. The INDIRECT register actually
isn’t a register at all...it simply causes accesses to other registers.

For example, if the INDEX register contains 0x10, then reading the INDIRECT register
at address 0x00 will return the value at location 0x10. In assembly code this would look
something like:

 MOVI 0x14 ; Load accumulator with 0x14
 MOVA 0x10 ; Store at address 0x10

 MOVI 0x10 ; Load accumulator with 0x10
 MOVA INDEX ; Store in the INDEX register

 MOV INDIRECT,A ; Accumulator now contains 0x14

If the INDEX register contains 0x00, then reading the INDIRECT register will return a
value of 0x00.

Technical Reference Manual 34 SLC1657

For more information about this register (including operation with respect to register
banks), please refer to the description of the INDEX register elsewhere in this manual.

3.1.5 Timer/counter Register (TIMRCNTR)

The timer/counter register (TIMRCNTR) loads or returns the eight-bit timer/counter.
The TIMRCNTR register is unchanged after any reset.

Reading the TIMRCNTR register returns the value of the timer/counter at the rising
[MCLK] edge at the beginning of the cycle. Writing to the TIMRCNTR register loads it
at the rising clock edge at the end of the cycle.

For more information on the TIMRCNTR register please refer to the Timer/counter Op-
eration section below.

3.1.6 Program Counter Register (PROGCNTR)

The program counter register (PROGCNTR) is used to read and write to the lower eight
bits of the program counter. The program counter is actually eleven bits wide...so the
most significant bits are not accessible from this register.

The PROGCNTR register is set to 0xFF after any reset, and increments one count after
every instruction (or two counts after a branch instruction).

Reading the program counter will return the lower eight bits of the address following the
instruction. That’s because the instantaneous value of the program counter reflects the
prefetch address (i.e. the address following the ‘read’ instruction). For example, the fol-
lowing instruction word located at address 0x56 will load the accumulator with 0x57:

 0x056 MOV PROGCNTR,A ; Move PROGCNTR to accumulator

Writing to the program counter preloads it with a new address, and causes a branch. This
activity always takes two clock cycles, as the instruction stream must be flushed.

Preloading the program counter is very useful for relative branch (i.e. lookup) tables.
When the program counter is preloaded, a new 8-bit address is stored in the program
counter, and the instruction pipeline is flushed. If an offset value is added to the program
counter, and then stored back into the program counter, then a relative branch will occur.

Technical Reference Manual 35 SLC1657

During program counter preloads, the two most significant bits are set to the value of
IB1:IB0 in the STATUS register. Bit 8 is always forced to zero. This means that relative
branch tables must reside in the lower half of memory.

For example, consider a lookup table for a sinewave generator. In this example, we have
a lookup table with thirty-two sinewave entries. A subroutine is created (in the lower
half of memory) which returns a unique sinewave value that depends upon a count be-
tween zero and thirty-one. The count value is passed to the subroutine in the accumula-
tor. In the subroutine, the accumulator is added to the program counter, which causes a
relative branch to a RET instruction. The RET instruction allows an immediate value to
be loaded into the accumulator before returning. Therefore, the count value in the accu-
mulator is converted to a sinewave value, and is then returned in the accumulator thusly:

 MOV COUNT,ACCUM ; Get the sinewave count (0 ≤ COUNT ≤ 31)
 BSR GETSINE ; Go get the lookup value
 . ; Return here with lookup value in accumulator
 .
 .
GETSINE ADD PC,1 ; Add accumulator to the program counter
 RET 0x00 ; Return with lookup value in accumulator
 RET 0x31 ; .
 RET 0x61 ; .
 RET 0x8D ; .
 . ; .
 . ; .
 . ; .

For more information, refer to the description of the PROGCNTR entity elsewhere in this
manual. For more information about the relationship between the program counter and
the bank selection bits, please see the section of this manual describing bank selection.

3.1.7 Status Register (STATUS)

The status register (STATUS) is used to monitor the status bits, set the memory bank and
to monitor the power up status. All of the bits (except TO and PD) are accessible by
reads or writes. The TO and PD bits are read-only. Table 3-4 summarizes the bits in the
STATUS register.

Bit D7 is unused and is reserved for future use. It should be set to zero for forward com-
patibility.

Bits D5 and D6 are the instruction bank select bits IB0 and IB1 respectively. These two
bits operate together to set the two most significant bits of program memory space during
branch (BRA), branch-to-subroutine (BSR) and program counter preload operations.

Technical Reference Manual 36 SLC1657

Bit D4 is the timeout bit (TO), and indicates whether or not a watchdog reset has oc-
curred. The bit is always set after a power-up reset or an external reset after a PWRDN
instruction. It is cleared after a watchdog reset. TO is a read-only bit.

Bit D3 is the power-down bit (PD), and indicates whether or not a reset has occurred af-
ter a PWRDN instruction. It is set after a power-up reset or a non-PWRDN watchdog
reset. It is always cleared after a PWRDN instruction. PD is a read-only bit.

The TO and PD bits can be used to determine the source of a reset. It is recommended
that they be used together as shown in Table 3-5.

The ‘TO’ and ‘PD’ bits are both set after a emulation ROM programming reset [PRE-
SET]. This mimics a power-up reset after downloading new code.

For more information on using the TO and PD bits please refer to the Timer/counter Op-
eration section below.

Table 3-4. Status register (STATUS).

Bit No. Mnemonic Description

D7 - Unused/reserved (set to zero).
D6 IB1 Instruction bank select bit 1
D5 IB0 Instruction bank select bit 0

D4

TO

Timeout (read only):
1: After power-up reset, RWT or PWRDN instruction
0: After a watchdog timeout

D3

PD

Power-down (read only):
1: After power-up reset or RWT instruction
0: After a PWRDN instruction

D2

Z

Zero bit (read/write):
1: Result of the operation is zero.
0: Result of the operation is non-zero.

D1

NC

Nibble-carry bit (read/write):
1: ADD - carry from bit D3 did occur
 SUB - borrow to bit D3 did not occur
0: ADD - carry from bit D3 did not occur
 SUB - borrow to bit D3 did occur

D0

C

Carry bit (read/write):
1: ADD - carry from bit D7 did occur
 SUB - borrow to bit D7 did not occur
 ROL/R - ‘1’ shifted from D7/D0 respectively
0: ADD - carry from bit D3 did not occur
 SUB - borrow to bit D3 did occur
 ROL/R - ‘0’ shifted from D7/D0 respectively

Technical Reference Manual 37 SLC1657

Table 3-5. TO and PD bits after reset.

TO PD Reset Type
0 0 Watchdog reset (from PWRDN)
0 1 Watchdog reset (non-PWRDN)
1 0 External reset (from PWRDN)
1 1 Power-up or other reset or PRESET

Bits D2, D1 and D0 are the he zero (Z), nibble-carry (NC) and carry (C) bits respectively.
They indicate the result of some arithmetic and logical operations. Refer to the individ-
ual instruction descriptions for more information.

Normally, these bits are set by the arithmetic logic unit (ALU). However, they can also
be changed by writing to the STATUS register. In this case, the result presented by the
ALU has precedence over the write data itself. For example, a CLR 0x03 instruction will
result in the ‘Z’ bit being set. For this reason, writing to the STATUS register ‘Z’, ‘NC’
and ‘C’ bits should be carefully evaluated. Instructions that do not set the condition code
bits (such as BCLR and BSET) are recommended for this case.

For more information, refer to the descriptions of the STATSREG entity, RESETGEN
entity, ALULOGIC entity, TCO register and instruction descriptions located elsewhere in
this manual. For more information about bits IB1:IB0, please see the sections on bank
selection located elsewhere in this manual.

3.1.8 Index Register (INDEX)

The index register (INDEX) is used to perform indirect addressing, and to indicate which
register bank is specified.

During indirect addressing it is used in conjunction with the INDIRECT register. To ac-
cess a value indirectly, the INDEX register is loaded with a seven bit address. Subse-
quent accesses to the INDIRECT register (at address 0x00) will then access the location
pointed to by INDEX. For example, if the INDEX register contains 0x10, then reading
the INDIRECT register at address 0x00 will return the value at location 0x10. This func-
tion is generally used for software pointers.

During normal (non indirect) addressing modes, bits D5 and D6 of the INDEX register
are used as register bank selection bits RB0 and RB1. For example, if RB1:RB0 = 0:0,
an access to address 0x10 will return the banked general purpose register at address 0x10.
However, if RB1:RB0 = 0:1, then an access to address 0x10 will return the banked gen-
eral purpose register at address 0x30.

Technical Reference Manual 38 SLC1657

The INDEX register is unchanged after reset. The unimplemented bit of the INDEX reg-
ister always read as ‘1’.

For more information, refer to the description of the INDIRECT register elsewhere in this
manual.

3.1.9 Port Registers (PORT0-2)

The port registers PORT0, PORT1 and PORT2 are used to access the I/O ports. Writing
to the port register sets the output value on signals [PTOUT0-2(7..0)]. Reading the port
returns the value on [PTIN0-2(7..0)]. Each bit in these registers accesses the correspond-
ing I/O bit. If the bit is set to a one, then the respective output pin is set to one. If the bit
is set to zero, then the pin is set to zero. The converse is also true when reading an input
port.

For more information about the PORT0-2 registers please refer to the I/O Port Options
section below.

3.1.10 General Purpose Registers (GENERAL PURPOSE)

The general purpose registers are used for data storage, and are eight bits wide. They are
not affected by reset. There are two types of general purpose registers: shared and
banked.

The SHARED GENERAL PURPOSE registers are accessible from all four memory
banks, regardless of the state of bits RB1 and RB0 in the INDEX register. For example,
reading the register at address 0x28 will actually cause a read from address 0x08.

The BANKED GENERAL PURPOSE registers are accessible only from the current reg-
ister bank, as selected by the register bank select bits RB1 and RB0 in the INDEX regis-
ter.

3.2 Reset Operation

There are three ways to reset the SLC1657 core. These are (a) with the external reset pin
[RESET], (b) with the emulation ROM reset pin [PROG* / PRESET] and (c) by the
watchdog reset. All resets generate the following activity:

• All bits in the port control registers PC0-2 are set to ‘1’.

Technical Reference Manual 39 SLC1657

• The state of STATUS register bits ‘TO’ and ‘PD’ are selected to reflect the source
of the reset.

• If the [PRESET] input is the source of the reset, then the ‘TO’ and ‘PD’ are both

set (thereby indicating a ‘power-up’ reset). The download circuit is also enabled.

• The watchdog timer is reset. All bits in the TCO register (with the exception of

the watchdog enable bit WDT) are set to ‘1’.

• The program counter is preset to 0x7FF. Note that addresses other than 0x7FF

are supported by modifications to the BUC11CPP (VHDL hardware) entity. This
entity is used by the program counter (PROGCNTR) entity, and contains logic
that generates the reset address. Changing this address is especially useful if less
than four program memory banks are used in the final design. For example, if
only 512 program words are needed, the BUC11CPP entity can be modified so
that the reset address is at 0x1FF. This allows ¾ of the memory to be eliminated
in the final design.

• The instruction bank select bits IB1:IB0 in the STATUS register are cleared.

• The instruction pipeline is flushed. This is done by clearing the instruction

stream, thereby causing a ‘NOP’ instruction to be fetched before the reset instruc-
tion.

For more information about reset, please refer to RESETGEN entity and the register de-
scriptions.

3.3 I/O Port Options

There are several ways that the I/O port pins can be implemented in the design. Figure 3-
1 shows three typical I/O configurations. These include the bi-directional, single-ended
three-state and single-ended I/O configurations.

The core also generates output port strobes PTSTB0-2. These are useful when interfac-
ing to external FIFOs and other devices. Each strobe corresponds to each output port.
These strobes are active for one [MCLK] clock cycle.

Reset does not affect the input or output port signals (except on power-up, where the out-
put ports initialize to the power-up state of D-type flip-flops in the target device). If
needed, the state of the output ports during reset should be selected with external logic.

Technical Reference Manual 40 SLC1657

I/O PIN

BI-DIRECTIONAL I/O SIGNAL

SINGLE ENDED I/O SIGNALS

SINGLE ENDED THREE STATE I/O SIGNALS

PCOUTN(BIT#)

MCLK

CEPTN

ALU(BIT#)

CE

D Q
OUTPUT
SIGNAL

OUTPUT
SIGNAL

ALU(BIT#)

PCOUTN(BIT#)

CEPTN

MCLK

ALU(BIT#)

CEPTN

MCLK

PCOUTN(BIT#)

D Q

D Q

CE

CE

OUTPUT
SIGNAL

MCLK

INPUT
SIGNAL

D Q PTN(BIT#)

D Q

MCLK

INPUT
SIGNAL

MCLK

D Q

PTN(BIT#)

PTN(BIT#)

Figure 3-1. I/O port configuration options. The flip-flops shown in the diagram are part
of the PORTSREG entity. The I/O buffers are added by the

user in the final implementation.

For example, when operating a port in the bi-directional three-state mode (using external
logic), then the ports will reset in the three-state condition.

The user must exercise some caution when doing back-to-back writes and reads to the
same port register. During writes, the port bits become active just after the positive
[MCLK] edge at the end of the cycle. During reads, the port bits are latched at the
[MCLK] edge immediately before the instruction is executed. Therefore, in the bi-
directional three configuration the data written to a port isn’t valid at the very next in-
struction.

For example, consider the timing diagram of Figure 3-2. Here we assume that the port is
operated in the bi-directional three-state configuration, and that all of the PORT0 bits are
in output mode (i.e. PC0 = 0x00). Sometime before the beginning of a code sequence the
PORT0 output is 0x57. Writing 0x38 to PORT0 causes the new output data to become

Technical Reference Manual 41 SLC1657

active just after the rising edge of [MCLK] at the end of the cycle. However, since the
port input data is sampled on the very same edge, the new data isn’t available yet. If
PORT0 is read immediately after writing to it, the old value of 0x57 is still obtained.
Reading the port a second time causes the new value to be read.

ACCUM = 0x57

PTSTB0

PORT0(7..0)

INS(11..0)

CLK

MOVA 0x05

ACCUM = 0x38

0x57

MOV 0x05,A

ACCUM = 0x38

0x38

MOV 0x05,A

Figure 3-2. Back-to-back PORT0 write and read operations in the
bi-directional three-state configuration.

This doesn’t imply that each port must be read twice...it just means that input and output
data are latched at the very same instant.

For more information please refer to the descriptions of the PORTSREG entity, PC0-2
register, PORT0-2 register and MOVP instruction descriptions elsewhere in this manual.

3.4 Timer/counter & Watchdog Operation

The 8-bit timer/counter is used for general purpose time interval and pulse counting func-
tions. Furthermore, the timer/counter prescaler can be re-assigned to work with the
watchdog timer.

3.4.1 Timer Operation

When operated as a timer, the timer/counter is used for general purpose time interval
measurements. In this mode, the TIMRCNTR register increments whenever an edge
from the clock source or the prescaler occurs. The time base can be derived from the in-
ternal clock source [MCLK / 4], or from the external [TMRCLK] pin.

In this mode the timer is usually operated as an elapsed time indicator. At the beginning
of the time interval the TIMRCNTR register is cleared, and is then periodically checked
to see if the time interval has elapsed.

Technical Reference Manual 42 SLC1657

For example, let’s assume that we need to determine when a 1.0 millisecond time period
has elapsed. Furthermore, let’s assume that we’re using the internal [MCLK] source as a
time base, that [MCLK] is operating at 5.00 MHz and that the watchdog timer is dis-
abled.

The first step is to initialize the timer/counter option register (TCO). In this case we’ll
set the WDT bit to ‘0’ (i.e. watchdog disabled), the TCS bit to ‘0’ (i.e. internal clock se-
lected), the TSE bit to ‘1’ (i.e. positive edge select) and the ASGN bit to ‘0’ (i.e. presca-
ler assigned to the timer/counter). The prescaler divider rate is selected so that an ade-
quate granularity12 of the clock is obtained. To find the prescaler divider rate we first
look at the time base frequency, which is:

Time base frequency = MCLK / 4 = 5.00 MHz / 4 = 1.25 MHz

This means that the TIMRCNTR register (without the prescaler) will increment at the
rate of 1.25 MHz. Since the target rate is about 0.001 MHz (1 / 1.0 ms = 0.001 MHz).
The prescaler divisor rate is then:

1.25 MHz / 0.001 MHz = 1,020

This means that the clock rate has to be stepped down by a factor of 1,020 to get the
TIMRCNTR register to tick over at 1.0 millisecond intervals.

To make the software a little simpler, the prescaler value is selected so that the 6th bit
(D05) of the TIMRCNTR register is asserted at the end of the 1.0 millisecond interval.
This gives a prescale value of:

1,020 / 26 = 1,020 / 64 = 15.9 ≅ 16

Therefore, the prescaler value will be 16, or PS2,1,0 = 0,1,1. This gives a TCO configu-
ration value of B00010011 = 0x13.

Also note that the numbers don’t work out evenly to 1.0 millisecond. That would require
a time base with an even multiple of 1.0 millisecond. The actual tick rate of the
TIMRCNTR register is:

Tick rate = (1 / 1.25 MHz) x (64 x 16) = 0.8 millisecond

Here’s a sample program that initializes the timer/counter in timer mode (with the pa-
rameters just calculated) and performs a section of code every millisecond:

12 By ‘granularity’, it is meant that TIMRCNTR register will ‘tick-over’ at reasonable times.

Technical Reference Manual 43 SLC1657

START MOVI 0x13 ; Initialize TCO register
 MOVT
 CLR TC ; Clear the timer/counter register

CHECK BTSC TC,5 ; Check if timer/counter bit D05 is set
 BRA ONE_MS ; Branch if a millisecond has passed
 .
 . ; Other code
 .
 BRA CHECK ; Loop back

ONE_MS CLR TC ; Clear the timer/counter register
 .
 . ; Activity to be performed every millisecond
 .
 BRA CHECK ; Loop back

3.4.2 Counter Operation

When operated as a counter, the timer/counter is used for pulse counting. In this mode,
the TIMRCNTR register increments whenever an edge from the clock source or the pre-
scaler occurs. Although the count can be derived from the internal clock source [MCLK
/ 4], it is generally obtained from the external [TMRCLK] pin in this mode.

For example, let’s assume that the timer/counter is used to measure the number of incom-
ing pulses from a shaft encoder. [A shaft encoder is simply an optical or magnetic pick-
up on a rotating shaft]. Furthermore, let’s assume that the program drops into a routine
every time the shaft turns past the encoder element.

In this example, we’ll monitor the negative edge of the shaft encoder signal, and that the
watchdog is enabled and assigned to prescaler. This means the program will look some-
thing like this:

START MOVT 0x68 ; Initialize TCO register
 CLR TC ; Clear the timer/counter register

CKSHFT MOV TC,ACCUM ; Check if the timer/counter has incremented
 BTSS STATUS,Z ; from zero.
 BRA SNSE_ENC ; Branch if the encoder has been sensed
 .
 . ; Other code
 .
 BRA CKSHFT ; Loop back

SNSE_ENC CLR TC ; Clear the timer/counter register
 .
 . ; Activity to be performed every millisecond
 .

Technical Reference Manual 44 SLC1657

 BRA CKSHFT ; Loop back

3.4.3 Watchdog Operation

The watchdog timer is used in two different ways (separately or in combination). As a
failure recovery mechanism, the watchdog resets the microcontroller if something has
gone wrong (either hardware or software). As a wake-up mechanism, the watchdog re-
sets the microcontroller after a suitable power-down interval. This reduces power con-
sumption.

The watchdog is formed from a 15-bit ripple counter. The counter is driven by the mi-
crocontroller clock divided by sixteen [MCLK / 16]. For example, if the microcontroller
clock operates at 5.00 MHz, the watchdog timeout period will be:

Timeout period = [1 / (5.00 MHz / 16)] x 2(15-1) ≅ 52 milliseconds

If a longer time-out period is needed, then the output from the watchdog can be routed
through the 8-bit prescale counter. For example, the longest watchdog timeout on a 5.00
MHz microcontroller is:

Maximum timeout period = {[1 / (5.00 MHz / 16)] x 2(15)} x 128 ≅ 13.4 seconds

The watchdog ripple counter is cleared in response to a reset or the RWT (reset watchdog
timer) instruction. This also clears the prescale counter (if it is attached to the watchdog).

When programming the SLC1657 it is recommended that the watchdog timer be enabled
or disabled immediately after a power-up reset. The power-up reset condition can be de-
termined by reading the TO and PD bits in the STATUS register. This discriminates the
power-up reset condition from, say, a wakeup reset after PWRDN.

It should be also noted that the TCO register is a write-only register, and that the bit set
and bit clear instructions will not work on it. For this reason all of the bits must be set
simultaneously.

Technical Reference Manual 45 SLC1657

For example, if the watchdog is to be enabled, then the following code will enable it
(once) only after the power-up reset:

 START: BTSS STATUS, 3 ; Test the PD bit
 BRA CONT ; Branch if PD = ‘0’
 BTSS STATUS,4 ; Test the TO bit
 BRA CONT ; Branch if TO = ‘0’

 WEBL: MOVI 0x7F ; Set the watchdog enable bit
 MOVT ; Store it in the TCO register

 CONT: ... ; ...and continue

If the watchdog is to be disabled, then the following code will disable it (once) only after
the power-up reset:

 START: BTSS STATUS,3 ; Test the PD bit
 BRA CONT ; Branch if PD = ‘0’
 BTSS STATUS,4 ; Test TO bit
 BRA CONT ; Branch if TO = ‘0’

 DABL: MOVI 0x3F ; Disable the watchdog timer
 MOVT ; Store it in the TCO register

 CONT: ... ; ...and continue

In some applications it is desirable that the watchdog be permanently enabled or disabled.
This eliminates any possibility that the watchdog can be inadvertently enabled or dis-
abled. In these cases the VHDL source file in the TCOPTREG entity13 should be
changed so that the WDT bit is permanently set or reset.

For more information, refer to the descriptions of the TIMRCNTR entity, the MOVT in-
struction, the TIMRCNTR register and the STATUS register located elsewhere in this
manual.

3.4.4 Changing the Prescale Register

The prescale counter can be changed under software control. Since this function is
shared by the timer/counter and the watchdog timer, it is possible to generate an unin-
tended watchdog reset when changing the value of the prescaler. To avoid this problem,
it is recommended that the prescaler be changed using the guidelines described in this
section.

13 The VHDL source file for the TCOPTREG entity contains instructions for permanently enabling or disabling the

watchdog timer.

Technical Reference Manual 46 SLC1657

When changing the prescaler from the timer/counter to the watchdog timer, it is recom-
mended that the following code sequence be used:

 RWT ; Reset the watchdog timer and prescaler
 CLR TIMRCNTR ; Clear the timer/counter register
 MOVI B‘00XX1111’ ; Set the prescale register to highest level
 MOVT
 RWT ; Reset the watchdog timer and prescaler
 MOVI B‘00XX1CCC’ ; Set prescaler to new division rate (‘CCC’)
 MOVT

When changing the prescaler from the watchdog timer to the timer/counter, it is recom-
mended that the following code sequence be used:

 RWT ; Reset the watchdog timer and prescaler
 MOVI B’XXXX0CCC’ ; Select TIMRCNTR and new prescale value
 MOVT

3.5 Power-down Operation

The SLC1657 core has a special power-down feature that allows it to reduce power con-
sumption. This is especially useful in low current or battery powered applications. A
special PWRDN instruction causes the microcontroller to halt operation, thereby reduc-
ing current consumption. The actual reduction in power consumption depends upon the
clock frequency and quiescent current consumption of the target FPGA or ASIC device.

After a PWRDN instruction the core is powered down until a reset occurs. The watchdog
timer and prescaler (if assigned to the watchdog) are cleared. During power-down the
microcontroller clock [MCLK] continues to operate14, but no instructions are fetched.

The ‘PD’ and ‘TO’ STATUS register bits are also affected by the PWRDN instruction.
This allows the reset handler routine to determine if the reset is caused by a reset in re-
sponse to a PWRDN instruction.

The [SLEEP] signal is asserted in response to the PWRDN instruction. This allows ex-
ternal devices to be powered down at the same time. The [SLEEP] signal can also be
used to suspend [MCLK] external to the core. This will further reduce power consump-

14 It is possible to alter the SLC1657 design so that even [MCLK] is suspended during the PWRDN condition. In the

standard SLC1657, [MCLK] is used by the watchdog timer (and emulation ROM input pins) to determine when to
‘wake-up’ from the PWRDN condition. In very low power applications it may be useful to shut off [MCLK] during
this interval as well. This will reduce even more power. In this case a separate clock pin must be supplied for the
watchdog timer. Contact the factory for details.

Technical Reference Manual 47 SLC1657

tion. However, care should be taken when suspending [MCLK], as this will cause the
watchdog timer to stop operating. In this case the external circuit must provide some
timing mechanism to restart both the [MCLK] signal and reset the microcontroller.

Let’s look at an example that uses both the RWT and PWRDN instructions. This is an
example where the microcontroller performs a setup routine once after power-up. After
the initial setup, the microcontroller goes to sleep, and periodically wakes up to perform
some task. We’ll assume a 5.00 MHz microcontroller where the watchdog timeout is
about 50 milliseconds. This means that the microcontroller will wake up about every 50
milliseconds, perform the task, and then put itself back to sleep.

The program resets to the ‘RESET’ label. The first four statements determine if the reset
was caused by a watchdog reset from the power-down condition. If it is, then both the
‘TO’ and ‘PD’ bits are zero, it jumps to the ‘WAKEUP’ label, and performs the wakeup
routine. Otherwise it assumes that a power-up, external or external reset has occurred.
During the power-up sequence a different set of code (including watchdog initialization)
is performed:

 RESET: BTSC STATUS, 3 ; Test the PD bit
 BRA PWRUP ; Branch if PD ≠ ‘0’
 BTSS STATUS,4 ; Test the TO bit
 BRA WAKEUP ; Branch if TO = ‘0’

 PWRUP: MOVI 0x7F ; Power-up program sequence
 MOVT ; Enable the watchdog timer
 .
 . ; Additional initialization instructions
 .

 WAKEUP: . ; Wakeup program sequence
 .
 . ; Application code
 .
 RWT ; Perform an RWT instruction if the
 . ; wakeup sequence takes longer than
 . ; the watchdog timeout period.
 .
 . ; Application code
 .
 ALLDONE PWRDN ; Execute the power-down command

Technical Reference Manual 48 SLC1657

3.6 Compatibility with the Microchip Part

The SLC1657 maintains a high degree of compatibility with the Microchip PIC16C57
part. While all instructions are compatible, there are some differences between the two
architectures. These include:

1) The watchdog timer in Microchip part is enabled via a special register in the
ROM area. However, this creates quite a nuisance in portable cores, and poten-
tial hardware non-portability. In the SLC1657, the watchdog enable bit (WDT)
resides in the TCO register.

 When programming the microcontroller, enable or disable the watchdog timer

immediately after a power-up reset. The power-up reset condition can be
sensed by reading the TO and PD bits in the STATUS register. This discrimi-
nates the power-up reset condition from, say, a wakeup reset after PWRDN.

2) The counter/timer external input is latched (clocked) at the beginning of every

MCLK cycle on the SLC1657. The same input on the Microchip part is sam-
pled twice during every clock cycle. This deviation is not expected to cause any
major problems, and is required to achieve the goal of one instruction per clock
cycle. The Microchip part requires four clock cycles for each instruction.

3) Input data on I/O ports PORT0-2 is latched at the beginning of every MCLK

cycle on the SLC1657. Input data is not latched on the Microchip part. This
deviation is not expected to cause any major problems, and is made to insure
proper set-up and hold timing in FPGA and ASIC devices, as well as to simplify
the timing specification.

4) The width of PORT0 is eight bits, and not four.

5) The instruction mnemonics will vary between the Silicore, Parallax and Mi-

crochip instruction sets. Table 3-6 shows the mnemonics used by these three
companies. It should be noted that while the mnemonics differ, they all result in
the same binary instruction op-code when assembled.

Technical Reference Manual 49 SLC1657

Table 3-6. Instruction mnemonic conversion.

Silicore

Mnemonic
Parallax

Mnemonic
Microchip
Mnemonic

ADD ADD ADDWF
AND AND ANDWF
ANDI AND ANDLW
BCLR CLC/CLR/CLZ/CLRB BCF
BRA JMP GOTO
BSET SETB/STC/STZ BSF
BSR CALL CALL

BTSC SNB/SNC/SNZ BTFSC
BTSS SB/SC/SKIP/SZ BTFSS
CLR CLR CLRF, CLRW
DEC DEC/MOV DECF

DECSZ DECSZ/MOVSZ DECFSZ
INC INC/MOV INCF

INCSZ INCSZ/MOVSZ INCFSZ
MOV MOV/TEST MOVF

MOVA MOV MOVWF
MOVI MOV MOVLW
MOVP MOV TRIS
MOVT MOV OPTION
NOP NOP NOP
NOT MOV/NOT COMF
OR OR IORWF
ORI OR/TEST IORLW

PWRDN SLEEP SLEEP
RET RET RETLW
ROL MOV/RL RLF
ROR MOV/RR RRF
RWT CLR CLRWDT
SUB MOV/SUB SUBWF

SWPN MOV/SWAP SWAPF
XOR XOR XORWF
XORI NOT/XOR XORLW

Technical Reference Manual 50 SLC1657

3.7 Instruction Set

Table 3-7 is a summary of the SLC1657 instruction set. This is followed by a detailed
description of each instruction.

Table 3-7. Instruction set summary.

Mnemonic

Oper-
and

Description

No.
Cycles

STATUS
Affected

Op-code

ADD R,D ADD register and ACCUM 1 Z,C,NC 0001 11DR RRRR
AND R,D AND register with ACCUM 1 Z 0001 01DR RRRR
ANDI V AND immediate with ACCUM 1 Z 1110 VVVV VVVV
BCLR R,B Clear register bit 1 - 0100 BBBR RRRR
BRA V Branch 2 - 101V VVVV VVVV
BSET R,B Set register bit 1 - 0101 BBBR RRRR
BSR V Branch to subroutine 2 - 1001 VVVV VVVV
BTSC R,B Test bit and skip if clear 1(2) - 0110 BBBR RRRR
BTSS R,B Test bit and skip if set 1(2) - 0111 BBBR RRRR
CLR R,D Clear register or ACCUM 1 Z 0000 01DR RRRR
DEC R,D Decrement register 1 Z 0000 11DR RRRR
DECSZ R,D Dec. register, skip if zero 1(2) - 0010 11DR RRRR
INC R,D Increment register 1 Z 0010 10DR RRRR
INCSZ R,D Inc. register, skip if zero 1(2) - 0011 11DR RRRR
MOV R,D Move register 1 Z 0010 00DR RRRR
MOVA R Move ACCUM to register 1 - 0000 001R RRRR
MOVI V Move immediate to ACCUM 1 - 1100 VVVV VVVV
MOVP V Move ACCUM to PC0-2 1 - 0000 0000 0VVV
MOVT - Move ACCUM to TCO 1 - 0000 0000 0010
NOP - No operation 1 - 0000 0000 0000
NOT R,D NOT register 1 Z 0010 01DR RRRR
OR R,D OR register with ACCUM 1 Z 0001 00DR RRRR
ORI V OR immediate with ACCUM 1 Z 1101 VVVV VVVV
PWRDN - Power-down 1 TO, PD 0000 0000 0011
RET V Return from subroutine 2 - 1000 VVVV VVVV
ROL R,D Rotate register left 1 C 0011 01DR RRRR
ROR R,D Rotate register right 1 C 0011 00DR RRRR
RWT - Reset watchdog timer 1 TO, PD 0000 0000 0100
SUB R,D Subtract ACCUM from register 1 Z,C,NC 0000 10DR RRRR
SWPN R,D Swap nibbles in register 1 - 0011 10DR RRRR
XOR R,D XOR register with ACCUM 1 Z 0001 10DR RRRR
XORI V XOR immediate with ACCUM 1 Z 1111 VVVV VVVV

Key: ‘D’: destination of the result (0 → ACCUM, 1 → register); ‘R’: register number (0x00 - 0x1F);
 ‘V’: immediate (data, bit number or address); ‘1(2)’: one or two cycles, depending upon result.

Technical Reference Manual 51 SLC1657

Add Register and Accumulator ADD

Description: The contents of the indicated register is added to the accumulator.

The result is placed into the register or the accumulator. Two’s
compliment arithmetic is used.

Mnemonic: ADD R,D

 where ‘R’ is the register number (0x00 - 0x1F) and ‘D’ is the desti-

nation (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (ACCUM + R) → D; (PC + 1) → PC

STATUS affected: Z, C, NC

Binary op-code: 0001 11DR RRRR

AND Register With Accumulator AND

Description: The contents of the indicated register is logically ‘AND’ed with the

accumulator. The result is placed into the register or the accumula-
tor.

Mnemonic: AND R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (ACCUM and R) → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0001 01DR RRRR

Technical Reference Manual 52 SLC1657

AND Immediate with Accumulator ANDI

Description: An immediate value is logically ‘AND’ed with the accumulator.

The result is placed into the accumulator.

Mnemonic: ANDI V

 where ‘V’ is an eight-bit immediate value.

Number Cycles: 1

Operation: (ACCUM and V) → ACCUM; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 1110 VVVV VVVV

Clear Register Bit BCLR

Description: The indicated bit in the indicated register is cleared. The result is

placed back into the register.

Mnemonic: BCLR R,B

 where ‘R’ is the register number (0x00 - 0x1F), and ‘B’ is the bit

number (0x0 - 0x7).

Number Cycles: 1

Operation: 0 → register bit ‘B’; (PC + 1) → PC

STATUS affected: None

Binary op-code: 0100 BBBR RRRR

Technical Reference Manual 53 SLC1657

Branch BRA

Description: The program counter is loaded with the indicated address. This

causes program execution to branch to a new location.

Mnemonic: BRA V

 where ‘V’ is a nine-bit address (0x000 - 0x1FF).

Number Cycles: 2

Operation: V → PC

STATUS affected: None

Binary op-code: 101V VVVV VVVV

Set Register Bit BSET

Description: The indicated bit in the indicated register is set. The result is placed

back into the register.

Mnemonic: BSET R,B

 where ‘R’ is the register number (0x00 - 0x1F), and ‘B’ is the bit

number (0x0 - 0x7).

Number Cycles: 1

Operation: 1 → reigster bit ‘B’; (PC + 1) → PC

STATUS affected: None

Binary op-code: 0101 BBBR RRRR

Technical Reference Manual 54 SLC1657

Branch to Subroutine BSR

Description: The program counter is incremented and pushed onto the stack.

The program counter is then loaded with the indicated address.

Mnemonic: BSR V

 where ‘V’ is an eight-bit address (0x00 - 0xFF). Address bit nine is

forced to zero. Note that subroutines called by this instruction must
reside in the lower half of instruction space.

Number Cycles: 2

Operation: (PC + 1) → STACK; V → PC

STATUS affected: None

Binary op-code: 1001 VVVV VVVV

Test Bit and Skip If Clear BTSC

Description: Test the indicated bit in the indicated register. If the bit is a zero,

then skip the next instruction. If the bit is a one, then execute the
next instruction. This instruction takes one or two CPU cycles, de-
pending on the state of the bit.

Mnemonic: BTSC R,B

 where ‘R’ is the register number (0x00 - 0x1F), and ‘B’ is the bit

number (0x0 - 0x7).

Number Cycles: Bit set: 1; bit cleared: 2

Operation: if register bit ‘B’ = 0 then (PC + 2) → PC; else (PC + 1) → PC

STATUS affected: None

Binary op-code: 0110 BBBR RRRR

Technical Reference Manual 55 SLC1657

Test Bit and Skip If SET BTSS

Description: Test the indicated bit in the indicated register. If the bit is a one,

then skip the next instruction. If the bit is a zero, then execute the
next instruction. This instruction takes one or two CPU cycles, de-
pending on the state of the bit.

Mnemonic: BTSS R,B

 where ‘R’ is the register number (0x00 - 0x1F), and ‘B’ is the bit

number (0x0 - 0x7).

Number Cycles: Bit set: 2; bit cleared: 1

Operation: if register bit ‘B’ = 1 then (PC + 2) → PC; else (PC + 1) → PC

STATUS affected: None

Binary op-code: 0111 BBBR RRRR

Clear Register or Accumulator CLR

Description: Clear the accumulator or the indicated register.

Mnemonic: CLR R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register). Note: when the destina-
tion is the accumulator, then set ‘R’ equal to 0x00.

Number Cycles: 1

Operation: 0x00 → D; (PC + 1) → PC

STATUS affected: 1 → Z

Binary op-code: 0000 01DR RRRR

Technical Reference Manual 56 SLC1657

Decrement Register DEC

Description: The contents of the indicated register is decremented. The result

can be placed into the register or the accumulator.

Mnemonic: DEC R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (R - 1) → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0000 11DR RRRR

Decrement Register, Skip if Zero DECSZ

Description: The contents of the indicated register is decremented. If the result

of the decrement is zero, then the next instruction is skipped. The
result can be placed into the register or the accumulator.

Mnemonic: DECSZ R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: D /= 0x00: 1; D = 0x00: 2

Operation: (R - 1) → D; if (D = 0x00) then (PC+2) → PC else(PC+1) → PC

STATUS affected: None

Binary op-code: 0010 11DR RRRR

Technical Reference Manual 57 SLC1657

Increment Register INC

Description: The contents of the indicated register is incremented. The result

can be placed into the register or the accumulator.

Mnemonic: INC R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (R + 1) → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0010 10DR RRRR

Increment Register, Skip if Zero INCSZ

Description: The contents of the indicated register is incremented. If the result

of the increment is zero, then the next instruction is skipped. The
result can be placed into the register or the accumulator.

Mnemonic: INCSZ R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: D /= 0x00: 1; D = 0x00: 2

Operation: (R + 1) → D; if (D = 0x00) then (PC+2) → PC else(PC+1) → PC

STATUS affected: None

Binary op-code: 0011 11DR RRRR

Technical Reference Manual 58 SLC1657

Move Register MOV

Description: The contents of the indicated register is moved to the destination

register. The destination can be the register or the accumulator.
Moving a register back into itself can be used to set the ‘Z’ bit.

Mnemonic: MOV R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: R → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0010 00DR RRRR

Move Accumulator to Register MOVA

Description: The contents of the accumulator is moved to the indicated register.

Mnemonic: MOVA R

 where ‘R’ is the register number (0x00 - 0x1F).

Number Cycles: 1

Operation: (PC + 1) → PC, ACCUM → R

STATUS affected: None

Binary op-code: 0000 001R RRRR

Technical Reference Manual 59 SLC1657

Move Immediate to Accumulator MOVI

Description: The contents of the accumulator is loaded with immediate data.

Mnemonic: MOVI V

 where ‘V’ is the value to be loaded into the accumulator.

Number Cycles: 1

Operation: V → ACCUM

STATUS affected: None

Binary op-code: 1100 VVVV VVVV

Move Accumulator to PC0-2 MOVP

Description: The contents of the accumulator is moved to the indicated port con-

trol register (PC0-2).

Mnemonic: MOVP V

 where ‘V’ is the port control register number. For PC0, ‘V’ = 5;

for PC1, ‘V’ = 6; for PC2, ‘V’ = 7.

Number Cycles: 1

Operation: ACCUM → PC0-2, (PC + 1) → PC

STATUS affected: None

Binary op-code: 0000 0000 0VVV

Technical Reference Manual 60 SLC1657

Move Accumulator to TCO MOVT

Description: The contents of the accumulator is moved to the timer/counter op-

tion (TCO) register.

Mnemonic: MOVT

Number Cycles: 1

Operation: ACCUM → TCO, (PC + 1) → PC

STATUS affected: None

Binary op-code: 0000 0000 0010

No Operation NOP

Description: A single CPU cycle is performed without affecting any of the inter-

nal registers or STATUS bits.

Mnemonic: NOP

Number Cycles: 1

Operation: (PC + 1) → PC

STATUS affected: None

Binary op-code: 0000 0000 0000

Technical Reference Manual 61 SLC1657

NOT Register NOT

Description: The contents of the register are inverted. The result can be placed

into the register or the accumulator.

Mnemonic: NOT R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: /R → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0010 01DR RRRR

OR Register With Accumulator OR

Description: The contents of the indicated register is logically ‘OR’ed with the

accumulator. The result can be placed into the accumulator or the
register.

Mnemonic: OR R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (ACCUM or R) → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0001 00DR RRRR

Technical Reference Manual 62 SLC1657

OR Immediate with Accumulator ORI

Description: The contents of the accumulator is logically ‘OR’ed with an imme-

diate value. The result is placed into the accumulator.

Mnemonic: ORI V

 where ‘V’ is an eight-bit value.

Number Cycles: 1

Operation: (ACCUM or V) → ACCUM; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 1101 VVVV VVVV

Power-down PWRDN

Description: The core is powered down until a reset occurs. The cycle modifies

the ‘PD’ and ‘TO’ bits in the STATUS register. The watchdog
timer and its prescaler (if used for the watchdog) are cleared, and
the SLEEP signal is asserted. During power-down the master clock
[MCLK] continues to operate, but no instructions are fetched.

Mnemonic: PWRDN

Number Cycles: 1

Operation: Clear watchdog / prescaler, update TO & PD, (PC + 1) → PC

STATUS affected: TO, PD (refer to the Reset Operation elsewhere in this manual)

Binary op-code: 0000 0000 0011

Technical Reference Manual 63 SLC1657

Return From Subroutine RET

Description: The accumulator is loaded with an immediate value. The program

counter is poped from the stack.

Mnemonic: RET V

 where ‘V’ is an eight-bit value.

Number Cycles: 2

Operation: V → ACCUM; STACK → PC

STATUS affected: None

Binary op-code: 1000 VVVV VVVV

Rotate Register Left ROL

Description: The contents of the indicated register is rotated one bit to the left

(through the carry bit). The result can be placed into the accumula-
tor or the register.

Mnemonic: ROL R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: See description.

STATUS affected: C

Binary op-code: 0011 01DR RRRR

Technical Reference Manual 64 SLC1657

Rotate Register Right ROR

Description: The contents of the indicated register is rotated one bit to the right

(through the carry bit). The result can be placed into the accumula-
tor or the register.

Mnemonic: ROR R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: See description.

STATUS affected: C

Binary op-code: 0011 00DR RRRR

Reset Watchdog Timer RWT

Description: Resets the watchdog timer. This instruction also resets the presca-

ler if it is assigned to the watchdog timer. STATUS register bits T0
and PD are set.

Mnemonic: RWT

Number Cycles: 1

Operation: Clear watchdog, clear prescaler (if assigned to watchdog),
 (PC + 1) → PC

STATUS affected: 1 → TO, 1 → PD

Binary op-code: 0000 0000 0100

Technical Reference Manual 65 SLC1657

Subtract Accumulator From Register SUB

Description: The contents of the accumulator is subtracted from the indicated

register. The result can be placed into the accumulator or the regis-
ter. Two’s compliment arithmetic is used.

Mnemonic: SUB R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (ACCUM - R) → D; (PC + 1) → PC

STATUS affected: Z, C, NC

Binary op-code: 0000 10DR RRRR

Swap Nibbles in Register SWPN

Description: Swaps the higher and lower nibbles in the indicated register. The

result can be placed into the register or the accumulator.

Mnemonic: SWPN R,D

Number Cycles: 1

Operation: See description.

STATUS affected: None

Binary op-code: 0011 10DR RRRR

Technical Reference Manual 66 SLC1657

XOR Register with Accumulator XOR

Description: The contents of the indicated register is logically ‘XOR’ed with the

accumulator. The result can be placed into the register or the ac-
cumulator.

Mnemonic: XOR R,D

 where ‘R’ is the register number (0x00 - 0x1F), and ‘D’ is the des-

tination (0 → accumulator; 1 → register).

Number Cycles: 1

Operation: (ACCUM xor R) → D; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 0001 10DR RRRR

XOR Immediate with Accumulator XORI

Description: The contents of the accumulator is logically ‘XOR’ed with an im-

mediate value. The result is placed into the accumulator.

Mnemonic: XORI V

 where ‘V’ is an eight-bit value.

Number Cycles: 1

Operation: (ACCUM xor V) → ACCUM; (PC + 1) → PC

STATUS affected: Z

Binary op-code: 1111 VVVV VVVV

Technical Reference Manual 67 SLC1657

4.0 VHDL Synthesis and Test

The SLC1657 was created and delivered in the VHDL hardware description language.
VHDL source code must be synthesized by the user before operation on a particular tar-
get device (such as an FPGA or ASIC). A variety of simulation, synthesis and CASE15
tools can be used with the core.

Most of the components used by the core are provided with the source code. However,
there are a few exceptions. RAM, ROM and I/O drivers must be synthesized with enti-
ties provided by the FPGA or ASIC vendor. This is because portable, synthesizable
RAM and ROM elements are not supported by the VHDL standards. Examples of com-
plete design solutions (with RAM, ROM and I/O) are provided elsewhere in this manual.

The SLC1657 is provided as a ‘soft core’. This means that all VHDL source code and
test benches are provided with the design. This enables the user to see inside of the de-
sign, thereby allowing a better understanding of it. This is useful from both a design
standpoint and from a test standpoint. From a design standpoint the user can tweak the
source code to better fit the application. From a test standpoint, it allows the user to cre-
ate custom test benches that incorporate both the core and other entities on the same IC.

Furthermore, the soft core approach allows the SLC1657 to be synthesized and tested
with a variety of software tools. This reduces the cost of special VHDL development
software. Users should verify that their software tools conform to the IEEE standards
listed in the next section of this manual.

Soft cores are fundamentally different than ‘firm cores’ or ‘hard cores’. These ap-
proaches have the advantage of maintainability and security, but limit the creative ability
of the end user. Furthermore, they do not permit portable, reliable test methodology, es-
pecially in ASIC target devices.

4.1 VHDL Simulation and Synthesis Tools

It is assumed by Silicore Corporation that all simulation and synthesis tools conform to
the following standards16:

• IEEE Standard VHDL Language Reference Manual, IEEE STD 1076-1993.
• IEEE Standard VHDL Synthesis Packages, IEEE STD 1073.3-1997.

15 CASE: Computer Aided Software Environment
16 Copies of the standards can be obtained from: IEEE Service Center, 445 Hoes Lane, P.O. Box 1331,

Piscataway, NJ USA 08855 (800) 678-4333 or from: www.ieee.org

Technical Reference Manual 68 SLC1657

• IEEE Standard Multivalue Logic System for VHDL Model Interoperability,
IEEE STD 1164-1993.

In most cases the VHDL source code should be fully portable as long as the simulation
and synthesis tools conform to these standards17. However, if incompatibilities between
the source code and the user’s tools are found, please contact Silicore Corporation so that
the problem can be resolved.

It is strongly recommended that the user have a set of VHDL simulation tools before in-
tegrating the SLC1657. These help in two ways: (a) they build confidence that the core
synthesizes correctly and (b) they help resolve any integration problems. The simulation
tools do not need to be fancy...a simple non-graphical simulator is adequate.

All original VHDL source files have been edited with the MS-DOS editor. Font style:
COURIER (monotype), tab spacing: 4. Almost any editor can be used, but the user may
find that the style and formatting of the source code is more readable using this (or a
compatible) editor.

17 The original SLC1657 was developed with PeakVHDL simulation and synthesis tools available from:

Protel International. For more information, please refer to: www.peakvhdl.com.

Technical Reference Manual 69 SLC1657

4.2 VHDL Portability

Portability of the VHDL source code is a very high priority in the SLC1657 design. It is
assumed that the core will be used in a variety of target devices and tools.

Several proven techniques have been used in the source code to enhance its portability.
These apply to the synthesizable code, and not to the test benches. These include:

• No variable types are used. Variables tend to synthesize unusual logic in some

VHDL compilers, and have not been used in the synthesizable entities. For ex-
ample, all counters are designed with logic functions, and not with incremental
variables.

• No internal three-state buses are used. Some FPGA architectures do not support

three-state buses well, and have been eliminated from the core (except for the
I/O port interfaces, which are user defined). However, some VHDL synthesis
tools will automatically create three-state buses on large multiplexors. This is
perfectly acceptable if the target device supports them.

• Synchronous resets, synchronous presets and asynchronous resets are used. No

asynchronous presets are used in the design. Most FPGA and ASIC flip-flops
will handle synchronous resets and presets very well. The asynchronous resets
are less portable, but are still supported by most devices. Asynchronous presets
are least portable, and have been eliminated from the design.

• Asynchronous (unintended latches) have been eliminated from the design.

These are usually the result of incompletely specified if-then-elsif VHDL state-
ments.

• Each source file contains one entity/architecture pair. Some simulator and syn-

thesis tools cannot handle more than one entity/architecture pair per file.

4.3 Required Resources on the Target Device

The logic resources required by the SLC1657 are fairly common, and are available in
most FPGA and ASIC target devices. However, before synthesis the user should confirm
that the following elements are available on the target device:

• A single, global, low skew clock interconnect (for [MCLK]). Most of the logic

in the core is synchronous, and a global clock coordinates all of the internal ac-
tivity.

Technical Reference Manual 70 SLC1657

• Logic elements such as NAND gates, NOR gates, inverters and D-type flip-
flops. Only elements defined by the IEEE STD 1164-1993 standard are used in
the core.

• D-type flip-flops with asynchronous reset. Although most reset/preset circuits

are synchronous, the WATCHDOG entity does require an asynchronous reset.

• D-type flip-flops with known power-up conditions. The SLC1657 has two in-

ternal bits (‘TO’ and ‘PD’) that must be set to a pre-defined state after a power-
up reset. These bits are defined in the RESETGEN entity. It is assumed that all
flip-flops power-up in the negated (i.e. cleared) condition. Refer to the RE-
SETGEN entity description for more details.

• 72 x 8-bit synchronous RAM. This is used for the register RAM. The core as-

sumes that the synchronous RAMs are FASM (FPGA and ASIC Subset Model)
compatible. For more information, see the FASM synchronous RAM model
(below).

• 2,048 X 12 asynchronous ROM block. The core assumes that the asynchronous

ROMs are FASM (FPGA and ASIC Subset Model) compatible. For more in-
formation, please refer to the FASM asynchronous ROM model (below). In
some cases, other types of ROMs may be used. For example, RAM can be sub-
stituted for the ROM if field upgrades of the application software are antici-
pated. Also, the core can be modified to use less than the full 2,048 words or
instruction memory.

4.3.1 FASM Synchronous RAM

The FASM18 synchronous RAM model is used whenever single, read and write clock cy-
cles are used. This memory conforms to the connection and timing diagram shown in
Figure 4-1. The SLC1657 core assumes that the register RAM operates in this way.

During write cycles, FASM Synchronous RAM stores input data at the indicated address
whenever: (a) the write enable (WE) input is asserted, and (b) there is a rising clock edge.

During read cycles, FASM Synchronous RAM works like an asynchronous ROM. Data
is fetched from the address indicated by the ADR() inputs, and is presented at the data
output (DOUT). The clock input is ignored. However, during write cycles, the output
data is updated immediately during a write cycle.

18 FASM: FPGA and ASIC Subset Model. The FASM model describes a set of available resources that are common to

most FPGA and ASIC target devices. This simplifies the task of creating portable IP cores.

Technical Reference Manual 71 SLC1657

Figure 4-1. FASM synchronous RAM connection and timing diagram.

4.3.2 FASM Asynchronous ROM

The SLC1657 core assumes that the instruction ROM operates like the FASM asynchro-
nous ROM. This memory conforms to the connection and timing diagram shown in Fig-
ure 4-2.

DOUTADR

DOUT()

ADR()

ASYNCHRONOUS
READ CYCLE

VALID

VALID

ROM

CLK 10

DIN()

DOUT()

ADR()

SYNCHRONOUS
WRITE CYCLE

WE

VALID

DIN DOUT

WE
ADR

CLK 10

DIN()

DOUT()

ADR()

ASYNCHRONOUS
READ CYCLE

WE

VALID

VALID

VALID

VALID

RAM

Technical Reference Manual 72 SLC1657

Figure 4-2. FASM asynchronous ROM connection and timing diagram.

Although the SLC1657 core assumes that the instruction ROM works in this manner,
other types of memory can be used. For example, in the Xilinx Spartan-II FPGA, rela-
tively large quantities of BLOCK RAM can be used. Unfortunately, these do not con-
form to the FASM ROM connection or timing. However, a simple interface circuit can
be created so that the core can be used with them. For more information, please refer to
the Xilinx sample circuits given in Chapter 6.

4.4 Soft Core Installation

The SLC1657 core is distributed as a set of VHDL source files. There is no special soft-
ware required to install the core. It is recommended that you create a unique directory
under the name ‘SLC1657’, and copy all of the directories (and files) on the distribution
disk to the new directory.

Inside the SLC1657 directory there will be several sub-directories. Locate and open the
sub-directory labeled ‘C:\VHDL_Source\Rev1.0’ (or substitute the latest revision number
that you want). Note that all revisions are provided with the distribution. This is because
the SLC1657 is distributed as source code. Silicore follows the conventional wisdom
that, when source code is provided, all revisions of the source are provided to the user.
This allows the end user to precisely track and review changes in the design, and to fa-
cilitate both forward and backward compatibility of the product. If you are familiar with
the Linux operating system, then you will recognize this strategy. Most Linux software
is distributed as source code, and all revisions are made available to the end user.

Inside the directory you will find a number of sub-directories named: ‘TOPLOGIC’, ‘BI-
NADDER’ and so forth. These names correspond directly to the names of the VHDL
entity/architecture pairs. The directory may also contain other files required to simulate
or synthesize the particular entity. For example, each sub-directory contains a file called
TSTBENCH.VHD. This is the test bench for that particular entity/architecture pair.
Also, don’t move the TSTBENCH.VHD files between folders. Each entity/architecture
has the same filename, and moving these files could cause problems.

- CAUTION -
Each entity/architecture pair directory in the distribution contains a file

named ‘TSTBENCH.VHD’. This is a test bench file. All of the test
benches have the same name, and should be moved between sub-
directories with caution to prevent overwriting other test benches.

Technical Reference Manual 73 SLC1657

The source file names for each entity/architecture pair are all eight characters long, and
are coupled with a ‘.VHD’ extension. The eight character filename has the same name as
the entity. For example, the ALULOGIC entity is stored under filename ‘ALU-
LOGIC.VHD’, and contains both the entity and architecture descriptions. Also, the test
bench for this file is named ‘TSTBENCH.VHD’.

4.5 Core Integration

Figure 4-3 shows how to integrate the SLC1657 core into the final application. This is a
very general overview, and may need to be adjusted by the user. Specific integration ex-
amples for FPGA parts are given, starting in Chapter 6.

Also, this description does not specifically show the application code development. If
the user is integrating the embedded ROM version of the product, then it is assumed that
the ROM source files will be integrated as part of the process.

- IMPORTANT -
Some test benches require conversions between integers and standard

logic vectors. If your test bench contains the statement
“work.SLV2INTPAK.all”, then it requires a file called ‘INTRCONV’.

This file is provided as part of the SLC1657 distribution.

Technical Reference Manual 74 SLC1657

SYNTHESIS
TOOLS CONFORM
TO STANDARDS

?

CHANGE TOOLS,
OR CONTACT FACTORY

CREATE TEST STRATEGY
FOR 'TOPLOGIC' CORE,

RAMS AND ROMS

FPGA

GENERATE TIMING
PREFERENCES / FILE

INTEGRATE THE
RAM & ROM ELEMENTS
TO FORM 'TOPLEVEL'

ENTITY

SYNTHESIZE THE
ENTIRE DESIGN

INTEGRATE WITH
OTHER FUNCTIONS IN
THE APPLICATION

PLACE & ROUTE

IS THE
TARGET AN
ASIC OR
FPGA?

'TOPLOGIC'
TEST BENCH

PASS
?

YES

PRE-SYNTHESIZE THE
'TOPLOGIC' ENTITY

LOAD VHDL 'TOPLOGIC'
ENTITIE(S) ONTO THE
DEVELOPMENT SYSTEM

SIMULATE THE
'TOPLOGIC' ENTITY

ASIC

NO

MODIFY AND CONNECT
'TOPLOGIC' TEST BENCH

INTO ASIC TEST

CONTACT FACTORY FOR
PROBLEM RESOLUTION

IDENTIFY WHICH
ENTITIES ARE CAUSING

THE PROBLEM

NO

YES

Figure 4-3. General integration of the SLC1657.

Follow these steps to integrate and synthesize the SLC1657:

1) Load the VHDL source files (including entities and test benches) onto the de-
velopment computer as described in the installation instructions. Enter the
TOPLOGIC entity into your simulation tool.

2) Simulate the TOPLOGIC VHDL entity. A complete test bench for the TOP-

LOGIC entity is provided in the TOPLOGIC file folder. The purpose of this

Technical Reference Manual 75 SLC1657

step is to (a) insure that all of the entities have been correctly installed and (b)
verify that the development tools correctly interpret the VHDL source code.

The test benches provided with the core provide only static logic analysis. They
do not provide any timing verification. If timing verification is needed, then the
user must modify the test benches accordingly.

 If the TOPLOGIC test bench simulation does not pass, then determine the cause
of the problem. In some cases the simulation tool must be configured to com-
pile using the applicable IEEE standards. Simulation and synthesis tools may
have soft switches to enable IEEE compatibility. Refer to the simulator docu-
mentation (provided by the tool supplier) for more details.

 If the development tools are configured properly, and the TOPLOGIC entity

still does not simulate correctly, then the simulation tool may be interpreting the
source code improperly. Identify which entities are causing the problem and
contact the factory.

 Some simulators provide rather cryptic debugging messages, and it may not be

obvious where the problem resides. In these cases it may be more expedient to
individually simulate each of the TOPLOGIC sub-entities (RESETGEN,
PROGCNTR, etc.). Test benches are provided for each entity in the core for
this purpose.

 Every effort has been made by Silicore Corporation to insure that the SLC1657

VHDL source code conforms to the IEEE standards. However, experience has
shown that some simulation and synthesis tools written to these standards may
vary somewhat in their implementation. [Stated another way, there is some am-
biguity in the way the standards are implemented]. SILICORE will make every
effort to help the user resolve these types of problems, should they occur.

3) Pre-synthesize the TOPLOGIC entity. By pre-synthesize it is meant that the en-

tity should be synthesized without the intention of placing or routing the design
onto the IC. The purpose of this step is to verify that the development tools
synthesizes the core correctly. This should be done early in the integration pro-
cess, as this allows more time to resolve any problems.

4) If the target device is an ASIC, then the user must create a test strategy. ASIC

integrations vary dramatically from FPGA integrations in the way their test
strategies are implemented. For example, SRAM based FPGA devices can be
100% functionally tested at the factory, and require little or no test effort at the
die level.

Technical Reference Manual 76 SLC1657

 ASICs, on the other hand, require test strategies that allow wafer probing at the
die level. Generally, this means that a parametric (timing) test must be created
so that each internal function can be tested individually.

 This process is complicated by the wide variety of ASIC tools and test strate-

gies. Silicore Corporation makes no attempt to solve this problem, except to
provide a starting point for the end user. A good ASIC test strategy is to break
the core into four elements:

 (a) TOPLOGIC entity
 (b) RAM
 (c) ROM
 (d) I/O elements

 Each of these can be independently tested if multiplexors are placed into the

path between the RAM, ROM, I/O and the TOPLOGIC core. When the multi-
plexors are placed into a test mode they can be used to access these compo-
nents, thereby allowing wafer test.

 Furthermore, this method allows a generic test of the TOPLOGIC core. The

TOPLOGIC test bench can be adjusted to the wafer die program to test all of
the functions of the microcontroller. This causes TOPLOGIC to be tested inde-
pendent of the ROM application code.

5) If the target device is an FPGA, then the user must create timing preferences for

the device. This is usually a very simple process on the SLC1657. Generally,
there are only two timing preferences which must be specified:

 (a) [MCLK] to [MCLK] set-up times.
 (b) Input / output to [MCLK] setup times.

 The SLC1657 is completely synchronous, so this means the timing specification

only has to show the relationship between signals and the clock setup times.

 For example, in the LUCENT FPGA evaluation board, the timing preference

simply dictates what the clock-to-clock setup times are. This is placed into a
‘preference file’ as follows:

Frequency net "MCLK" 5 MHz;

 This simply specifies that the place-and-route tool must adjust all logic and tim-

ing paths to operate at a 5 MHz clock speed. In this case, the input / output
setup times or omitted because they are irrelevant to the implementation.

Technical Reference Manual 77 SLC1657

 It may also be useful to specify the device pinout at this stage of the integration.
Refer to the FPGA place and route tool documentation for more details.

6) Integrate the RAM, ROM and I/O elements. The design of these high-level en-

tities will vary from application-to-application.

 The RAMROM and I/O drivers must be synthesized with components provided

by the FPGA or ASIC vendor. This is because portable, synthesizable RAM and
ROM elements are not supported by the VHDL standards. This also allows the
user greater flexibility in designing these elements into the application.

 Refer to the FPGA or ASIC vendor documentation before creating the RAM,

ROM and I/O elements.

7) Integrate the application-specific entities into the design. Generally, these will

be written and tested as their own core(s). The integration phase generally
means connecting the core to the application-specific core(s), and then testing
the entire design.

 In some cases, it is necessary to simulate the entire design. Generally, this

means creating a VHDL ROM element that simulates the application code. In
most cases the ROM entity can be created with the FPGA or ASIC design ven-
dor tools. These same tools will usually create RAM and ROM test benches.

 In some cases, the user may wish to use the emulation ROM entity. This allows

the application code to be downloaded to the core, and is very useful for testing
the end application on an FPGA. In these cases, it may not make any sense to
simulate the entire design until the application code has been completed.

8) Synthesize the entire design. Once the SLC1657 and application-specific cores

have been integrated, the entire design must be synthesized. Refer to the syn-
thesis tool documentation for more details.

9) Place and route. When synthesis has been completed, the entire design must be

placed and routed onto the FPGA or ASIC. Refer to the place & route tool
documentation for more details.

4.6 VHDL Reference Books

Some of the following VHDL reference books may be useful to the user:

Technical Reference Manual 78 SLC1657

• Ashenden, Peter J. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers,
Inc. 1996. ISBN 1-55860-270-4. Excellent general purpose reference guide to
VHDL. Weak on synthesis, stronger on test benches. Good general purpose guide,
very complete.

• IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1993. IEEE,

New York NY USA 1993. This is a standard, and not a tutorial by any means. Use-
ful for defining portable VHDL code.

• IEEE Standard VHDL Synthesis Packages. IEEE Std 1076.3-1997. IEEE, New York

NY USA 1997. This is a standard, and not a tutorial by any means. Useful for de-
fining portable VHDL code.

• IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_logic_1164). IEEE Std 1164-1993. IEEE, New York NY USA 1993. This is a
standard, and not a tutorial by any means. Useful for defining portable VHDL code.

• Pellerin, David and Douglas Taylor. VHDL Made Easy. Prentice Hall PTR 1997.

ISBN 0-13-650763-8. Good introduction to VHDL synthesis and test benches, and
closely follows the IEEE standards.

• Skahill, Kevin. VHDL For Programmable Logic. Addison-Wesley 1996. ISBN 0-

201-89573-0. Excellent reference for VHDL synthesis. Very good treatment of prac-
tical VHDL code for the synthesis of logic elements. Weak on test benches and exe-
cution of the IEEE standards.

Technical Reference Manual 79 SLC1657

5.0 Hardware (VHDL Entity) Reference

The SLC1657 core is organized as a series of VHDL entities. These are tied together
into an entity called TOPLOGIC. All of the entities, including TOPLOGIC, are de-
scribed in this chapter. However, the SLC1657 distribution includes other entities that
are not described in this chapter. For example, the Xilinx Spartan 2 evaluation board ex-
ample (presented in Chapter 6) contains other entities that are specific to that implemen-
tation. Those additional entities are described in that chapter.

The SLC1657 core was upgraded from its predecessor, the SLC1655. This upgrade in-
creased both the program (instruction) memory, and the register memory. This involved
changes to the following entities (along with their associated test files):

• INDEXREG.VHD
• INSTRDEC.VHD
• PROGCNTR.VHD
• STATSREG.VHD
• TOPLOGIC.VHD

5.1 ALULOGIC Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: BINADDER

The ALULOGIC entity generates all logical and arithmetic operations. During each in-
struction, data is presented by the register and/or the accumulator at the ‘R’ and ‘A’ in-
puts respectively. At the same time, the INSTRDEC entity specifies the type of ALU
function on the [ALF(3..0)] input. The ALULOGIC entity then operates on the input
data, and places the result on the [ALU(7..0)] output bus. Table 5-1 shows the ALU
function encoding, and the resulting operation.

The ALULOGIC entity also generates the Z, C and NC condition code bits. These are
presented on status bus [STA(6..0)], and are latched (or checked) by the STATSREG and
INSTRDEC entities. The encoding of [STA(6..0)] is shown in Table 5-2. The status bus
also includes a bit test signal, which is used by the INSTRDEC entity during BTSC and
BTSS instructions.

During rotate instructions (ROL and ROR), a carry-in bit [CIN] is presented to the ALU-
LOGIC entity by the STATSREG entity. This bit is needed because both instructions
rotate through the carry bit. No other operations (ADD, SUB, etc.) use the [CIN] bit.

Technical Reference Manual 80 SLC1657

During bitwise operations (BCLR, etc.), the bit number of the operand is presented to the
ALULOGIC using a portion of the instruction bus [INS(7..5)].

Table 5-1. Encoding of ALU function [ALF(3..0)].

ALF(3..0)

General
Description

Mnemonic Description

STATUS
Bits Affected

0000 PASs through No z PASN: D → ALUout -
0001 CLeaR 0x00 → ALUout Z
0010 SUBtract (D - A) → ALUout Z, C, NC
0011 DECrement (D - 1) → ALUout Z
0100 OR, logical OR(A, D) → ALUout Z
0101 AND, logical AND(A, D) → ALUout Z
0110 XOR, logical XOR(A, D) → ALUout Z
0111 ADD (A + D) → ALUout Z, C, NC
1000 PASs through w/Z PASZ: D → ALUout Z
1001 NOT, logical NOT(D) → ALUout Z
1010 INCrement (D + 1) → ALUout Z
1011 Bit CLeaR BCLR(bit D) → ALUout -
1100 ROtate Right ROR(D) → ALUout C
1101 ROtate Left ROL(D) → ALUout C
1110 SWaP Nibbles SWPN(D) → ALUout -
1111 Bit SET BSET(bit D) → ALUout -

Table 5-2. Encoding of the STA(6..0) bus.

STA(6..0) Function

STA(0) Carry bit (C)
STA(1) Carry bit (C) clock enable
STA(2) Nibble-carry bit (NC)
STA(3) Nibble-carry bit (NC) clock enable
STA(4) Zero bit (Z)
STA(5) Zero bit (Z) clock enable
STA(6) BIT TEST result (not used by STATUS)

Technical Reference Manual 81 SLC1657

5.2 BINADDER Entity

Other entities that use this module: ALULOGIC
Other entities used by this module: NONE

The BINADDER entity is used by the arithmetic logic unit (ALU) to perform add, sub-
tract, increment and decrement functions. All logic in this entity is combinational, mean-
ing that no clocks are used. Figure 5-1 shows a block diagram of the entity.

Data is presented on the [AIN(7..0)] and [BIN(7..0)] inputs of the binary adder functional
entity. The entity then performs 2’s complement addition. During subtraction, the input
and output data buses are inverted to produce the correct results.

Signal [ADDINC] is asserted only during add and increment operations. During these
instructions the value at the ‘A’ input is added to the ‘B’ input. During subtract and dec-
rement instructions, the ‘A’ input and ‘O’, ‘C’ and ‘NC’ outputs are inverted.

Signal [ADDSUB] is asserted only during add and subtract operations. During these op-
erations, the ‘A’ input is added to the ‘B’ input. During increment and decrement opera-
tions, a value of 0x01 is jammed into the ‘B’ input.

Condition code bits ‘C’ and ‘NC’ during add, subtract, increment and decrement func-
tions are also generated by the BINADDER entity. The ‘Z’ bit, however, is generated
near the output of the ALULOGIC entity.

BINARY
ADDER

0x01

B(7..0)

ADDINC

ADDSUB

A(7..0)

BIN(7..0)

AIN(7..0)

1

0

1

0

O(7..0)
ADD(7..0)

1

0

CRY(3)

CRY(7)

1

0

1

0

NC

C

Figure 5-1. Block diagram of the BINADDER entity.

Technical Reference Manual 82 SLC1657

5.3 BUC08NNP Entity

Other entities that use this module: TIMRCNTR
Other entities used by this module: NONE

The BUC08NNP entity is an eight-bit binary ‘up’ counter with preload capabilities. It is
used as the counter in the TIMRCNTR entity.

No ‘variable’ types are used in the VHDL counter design. Variables tend to produce un-
usual code in some VHDL compilers, and have been avoided here. The counter is de-
signed with logic functions, and not with incremental variables.

5.4 BUC11CPP Entity

Other entities that use this module: PROGCNTR
Other entities used by this module: NONE

The BUC11CPP entity is an eleven-bit binary ‘up’ counter with clock enable, synchro-
nous preset and preload capabilities. It is used to generate the program counter. After
every assertion of [MRESET], the BUC11CPP is preset to binary 0x7FF to generate the
initial instruction address.

No ‘variable’ types are used in the VHDL counter design. Variables tend to produce un-
usual code in some VHDL compilers, and have been avoided here. The counter is de-
signed with logic functions, and not with incremental variables.

5.5 CLOCKDIV Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The CLOCKDIV entity generates the [MCLK_4] and [MCLK_16] clocks from the mi-
crocontroller clock [MCLK]. It is a four bit up counter with synchronous reset. The
counter is a ‘free-running’ type, and the synchronous reset is used only for test purposes.

No ‘variable’ types are used in the VHDL counter design. Variables tend to produce un-
usual code in some VHDL compilers, and have been avoided here. The counter is de-
signed with logic functions, and not with incremental variables.

Technical Reference Manual 83 SLC1657

5.6 INDEXREG Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The INDEXREG entity contains a seven-bit register with clock enable. The register is
located on the lower seven bits, and the upper five bit returns logic ‘1’.

The INDEXREG entity was changed during the upgrade from the SLC1655 to the
SLC1657 architecture. The register was increased from five to seven bits to support a
larger register memory.

5.7 INSTRDEC Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The INSTRDEC entity provides instruction decoding, routes the address bus, routes the
data source, selects the ALU function, and provides master control for the core. Each of
these functions is ultimately controlled by the instruction op-code.

The SLC1657 uses a RISC, or reduced instruction set computer architecture. One major
feature of the RISC architecture is that it uses an unencoded instruction stream. That
means that control logic is embedded within the instruction itself. This is opposed to
CISC, or complex instruction set computer architectures, which encode their instructions
in an intermediate encoding scheme.

The term ‘decode’, when applied to the INSTRDEC entity, means that it decodes the spe-
cific register address, and does not imply that it decodes an intermediate op-code. The
unencoded instruction stream of the RISC processor gives them the advantage of speed
and simplicity. Each op-code has direct control logic information that does not need very
much decoding. This shrinks the amount of required logic, and speeds up the computer.

Another feature of RISC processors is the use of separate instruction and data buses.
This is often called a Harvard architecture, and is useful because it alleviates the need for
a shared bus. Shared buses create bottlenecks (in terms of both speed and logic size) be-
cause they are used to pass both instructions and data. Furthermore, they usually require
the use of three-state buses, which tend to make them less portable across various FPGA
devices.

The disadvantage of RISC processors is that they require relatively wide op-codes, and
fast instruction memory. For example, the core has a twelve-bit wide memory. This is

Technical Reference Manual 84 SLC1657

opposed to most CISC microcontrollers, which usually have eight-bit wide memories.
CISC processors can encode up to 256 instructions in each op-code, whereas the
SLC1657 RISC processor has only thirty-two separate instructions.

The instruction speed problem is diminished in the core because of it’s instruction pre-
fetch capability. This provides one full clock cycle to create a new address, and fetch the
op-code from memory.

Table 5-3 shows the list of SLC1657 instructions sorted by binary op-code and address-
ing type. There are five general instruction types:

• IMPLICIT
• STANDARD
• BITWISE
• BRANCH
• IMMEDIATE

5.7.1 Implicit Instructions

Implicit instructions are those where the function of the op-code is implicitly defined.
For example, the RWT instruction implicitly defines a fixed function, and has no explicit
address.

During implicit instructions, the INSTRDEC entity decodes all twelve bits of the op-
code, and asserts a signal associated with the instruction. For example, during a PWRDN
instruction the PWRDN signal is asserted.

Signals CEPC0, CEPC1, CEPC2, CETCO, PWRDN and RWT are generated by implicit
instructions. There are no instruction related signals generated by the NOP instruction.

During a PWRDN instruction the core suspends instruction fetches, and halts most of the
internal logic. This reduces current consumption. However, the MCLK, MCLK_4 and
MCLK_16 clocks continue to operate, as these are used by the watchdog timer. The ac-
tual reduction in current consumption after the PWRDN instruction depends upon the
target device technology.

Technical Reference Manual 85 SLC1657

Table 5-3. Binary op-codes.

Binary Op-code Addressing Mode Mnemonic ALF Cycles
0000 0000 0000 IMPLICIT NOP PASN 1
0000 0000 0010 IMPLICIT MOVT PASN 1
0000 0000 0011 IMPLICIT PWRDN PASN 1
0000 0000 0100 IMPLICIT RWT PASN 1
0000 0000 0PPP IMPLICIT MOVP PASN 1
0000 00DR RRRR STANDARD MOVA19 PASN 1
0000 01DR RRRR STANDARD CLR/CLRA CLR 1
0000 10DR RRRR STANDARD SUB SUB 1
0000 11DR RRRR STANDARD DEC DEC 1
0001 00DR RRRR STANDARD OR OR 1
0001 01DR RRRR STANDARD AND AND 1
0001 10DR RRRR STANDARD XOR XOR 1
0001 11DR RRRR STANDARD ADD ADD 1
0010 00DR RRRR STANDARD MOV PASZ 1
0010 01DR RRRR STANDARD NOT NOT 1
0010 10DR RRRR STANDARD INC INC 1
0010 11DR RRRR STANDARD DECSZ DEC 1(2)
0011 00DR RRRR STANDARD ROR ROR 1
0011 01DR RRRR STANDARD ROL ROL 1
0011 10DR RRRR STANDARD SWPN SWPN 1
0011 11DR RRRR STANDARD INCSZ INC 1(2)
0100 BBBR RRRR BITWISE BCLR BCLR 1
0101 BBBR RRRR BITWISE BSET BSET 1
0110 BBBR RRRR BITWISE BTSC PASN 1(2)
0111 BBBR RRRR BITWISE BTSS PASN 1(2)
1000 VVVV VVVV BRANCH RET PASN 2
1001 VVVV VVVV BRANCH BSR PASN 2
101V VVVV VVVV BRANCH BRA PASN 2
1100 VVVV VVVV IMMEDIATE MOVI PASN 1
1101 VVVV VVVV IMMEDIATE ORI OR 1
1110 VVVV VVVV IMMEDIATE ANDI AND 1
1111 VVVV VVVV IMMEDIATE XORI XOR 1
Notes: ‘B’ specifies a bit number; ‘D’ specifies a destination (0 → accum;
 1 → register); ‘P’ specifies a port number; ‘R’ specifies a register
 number; ‘V’ is an immediate operand; ‘1(2)’ indicates a conditional
 branch instruction with one or two cycles.

Once asserted, the PWRDN signal remains asserted until [MRESET] is asserted. [MRE-
SET] is asserted either by a watchdog timer reset [WRESET], an external reset [RESET],
or a programming reset [PRESET]. Also, the PWRDN signal is eventually connected to
the external [SLEEP] signal.

The PWRDN instruction also causes the watchdog timer and prescaler to reset. This is
exactly the same situation as if an RWT instruction were executed. Since the [PWRDN]
signal remains asserted until [MRESET], the [RWT] signal is generated using the circuit

19 Operand ‘D’ is always ‘1’ for this instruction.

Technical Reference Manual 86 SLC1657

shown in Figure 5-2. That circuit causes [RWT] to be pulsed once when the PWRDN
instruction is generated.

LPWRDN

MCLK

D

LRWT

Q

RWT

Figure 5-2. Circuit used to generate [RWT] during a PWRDN instruction.

5.7.2 Standard Instructions

Standard instructions are those where the source and the destination register are both de-
fined within the op-code itself. The register number is defined by the lower six bits of
the op-code. The destination of the instruction can be the accumulator or a register. For
example, during an ADD instruction the source of the data is taken from a register, and is
ADD’ed to the accumulator. The destination of the instruction can be either a register
(where the source and destination register must be the same) or the accumulator.

The destination is determined by instruction bit INS(5). When this bit is asserted the des-
tination is a register, and when negated the destination is the accumulator. The IN-
STRDEC entity asserts signal CEACC (Clock Enable ACCumulator) whenever the des-
tination is the accumulator. When the destination is a register, then the appropriate clock
or write enable signal is asserted.

During two cycle instructions (e.g. INCSZ) the register destination data is actually
latched twice during the cycle. This does not cause a problem, as both data sets have
identical numbers.

5.7.3 Bitwise Instructions

Bitwise instructions operate only on registers, and not on accumulator data. Three bits
within the instruction defines the bit number to be operated upon. For example, during a
BCLR operation, data is taken from a register, the bit specified in the op-code is cleared,
and the result is placed back into the source register. In some cases, the ALULOGIC en-
tity will decode the bit number.

5.7.4 Branch Instructions

Technical Reference Manual 87 SLC1657

Branch instructions cause program execution to jump to another location. Eight or nine
bit addresses are embedded within the op-code (depending upon the instruction). For ex-
ample, the BRA instruction causes program the program to begin executing at a new lo-
cation as specified by the lower nine bits of the op-code. The BSR instruction, however,
uses the lower eight bits of op-code. Therefore, subroutines must reside in the lower half
of instruction memory.

A portion of each branch instruction is interpreted and handled by the PROGCNTR en-
tity.

5.7.5 Immediate Instructions

Immediate instructions incorporate eight bits of data within the op-code itself. This data
immediately ‘acts’ with the accumulator in the ALU. The result is placed back into the
accumulator. For example, the ORI instruction OR’es eight bits of data (located in the
op-code) with the accumulator, and places the result back into the accumulator.

5.7.6 ADR Router [ADR(6..0)]

The address router generates the address bus [ADR(6..0)]. It is used by clock enable de-
code, the register multiplexor and by the general purpose register memories.

The address [ADR(6..0)] is routed using the logic shown in Figure 5-3. This value is
concatenated from the register bank select bits RB1:RB0, which are carried by IDX(6..5).

The address embedded in the lower five bits of the op-code [INS(4..0)] is monitored, and
in most cases is routed directly to [ADR(4..0)]. However, if register zero is selected
[INS(4..0) = 00000], then the value in the index register [IDX(4..0)] is routed to
[ADR(4..0)].

1

0

INS(3)

INS(2)

INS(1)

INS(0)

INS(4)

ADR(4..0)
IDX(4..0)

INS(4..0)

IDX(6..5)
ADR(6..5)

ADR(6..0)

ADR(4)
ADR(3)

1

0

B"00"

Technical Reference Manual 88 SLC1657

Figure 5-3. INSTRDEC logic for generation of [ADR(6..0)].

If the SHARED GENERAL PURPOSE registers are selected, then the two most signifi-
cant bits [ADR(6..5)] are set to zero. This maps all accesses to this region down to the
lower bank of register RAM. This allows a contiguous RAM block to serve as the regis-
ter RAM, and simplifies the integration of the core.

The INSTRDEC entity also uses [ADR(6..0)] to (a) generate data selection logic
[SEL(1..0)], and (b) to decode clock enable signals CEIDX, CEPRC, CEPT0, CEPT1,
CEPT2, CESTA, CETMR and WERAM.

5.7.7 SEL Router [SEL(1..0)]

The SEL router bus [SEL(1..0)] is used by the data source multiplexor to determine if
data should come from the special purpose registers, the general purpose registers, the
instruction stream or the accumulator.

During implicit instructions, the data source multiplexor is not used. During standard
(except for MOVA) and bitwise instructions, the data source comes from the special or
general purpose registers. During branch or immediate instructions, the data source
comes from the instruction stream. During the MOVA instruction the data source comes
from the accumulator.

5.7.8 ALF Function Generator [ALF(3..0)]

The INSTRDEC entity encodes the arithmetic logic unit (ALU) function type onto the
[ALF(3..0)] bus. This four-bit bus causes the ALU to perform specific functions. The
encoding of [ALF(3..0)] is described with the ALULOGIC entity. The logic which is
used to generate [ALF(3..0)] is shown in Figure 5-4.

Technical Reference Manual 89 SLC1657

AIM(3..0)

ASZ(3..0)

ABW(3..0)

ABR(3..0)

BITWISE

SOZ

IMMEDIATE

BRANCH(0000)

INS(11)

INS(9..8)

INS(9..6)

1

0

ORI(0100) 1

BCLR(1011)

BSET(1111)

INS(8)

BTSC(0000)

BTSS(0000)

INCSZ(1010)

DECSZ(0011)

MOVI(0000)

INS(9..8)

1

0

3

2

1

0

0

XORI(0110)

ANDI(0101)

3

2

AFS(0)

AFS(1)

0

ALF(3..0)

1

2

3

Figure 5-4. ALF function generator.

Technical Reference Manual 90 SLC1657

5.7.9 [ENDCYC] Generator

Assertion of the [ENDCYC] signal causes a new instruction to be latched into the in-
struction register.

The [ENDCYC] signal is asserted during all implicit, single cycle standard, single cycle
bitwise and immediate instructions. It is delayed one cycle during two cycle standard,
two cycle bitwise and branch instructions.

The cycle is also extended whenever the program counter is the destination. For exam-
ple, the ADD 0x002 instruction causes the program counter to be added to the accumula-
tor. The result is then placed back into the program counter. This creates a double cycle
because an address must be flushed from the program counter.

During PWRDN instructions the [ENDCYC] signal remains negated. There are no in-
struction fetches during this time, and [ENDCYC] remains asserted until [MRESET] is
generated.

5.7.10 Reset Operation

The [MRESET] signal is not used by the INSTRDEC entity. Whenever [MRESET] is
asserted, the REG12CRN entity (instruction register) is reset, thereby generating a NOP
instruction. Therefore, the first instruction performed after every reset is technically a
NOP instruction.

5.8 INTRCONV Entity

Other entities that use this module: TSTBENCH (many)
Other entities used by this module: NONE

The INTRCONV entity is used only for test benches. It converts integer to
std_logic_vector types (and vice-versa).

Some test benches require conversions between integers and standard logic vectors. If
your test bench contains the statement “work.SLV2INTPAK.all”, then it requires the
‘INTRCONV’ file.

5.9 MUX08X04 Entity

Technical Reference Manual 91 SLC1657

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The MUX08X0420 entity multiplexes four, eight-bit buses.

5.10 MUX08X08 Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The MUX08X08 entity multiplexes eight, eight-bit buses.

5.11 MUX11X04 Entity

Other entities that use this module: PROGCNTR
Other entities used by this module: NONE

The MUX11X04 entity multiplexes four, eleven-bit buses.

5.12 PORTSREG Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The PORTSREG entity handles all of the I/O port activity used in conjunction with the
PORT0, PORT1 and PORT2 registers. It does not interact with the port control registers
PC0-2.

The PORTSREG entity is really just a set of input and output latches, together with an
output strobe. Each entity is configured for 8-bit wide I/O ports.

When writing to a port, the PORTSREG entity latches and holds the data . Data becomes
active at the output port at the rising edge of [MCLK], at the end of the instruction cycle
that generated the access..

20 MUXWWXSS specify a class of multiplexors where ‘WW’ is the width of input and output buses and

‘SS’ specifies the number of selectors.

Technical Reference Manual 92 SLC1657

The entity also provides output strobes [PTSTB0-2]. Each of these strobes corresponds
to port registers PORT0-2. When data is written to a port, the port strobe is asserted for
one [MCLK] cycle. This is useful when the ports are used in conjunction with external
FIFO buffers.

When reading from a port, the PORTSREG entity latches and holds the incoming data.
Data is latched at the rising edge of [MCLK], at the beginning of the instruction cycle
that generated the access.

For more information please refer to the descriptions of the PORT0-2 register and the I/O
options elsewhere in this manual.

5.13 PRESCALE Entity

Other entities that use this module: TIMRCNTR
Other entities used by this module: TIMRSYNC

The PRESCALE entity handles the counter/timer/watchdog prescaler logic. A block dia-
gram of the PRESCALE entity is shown in Figure 5-5.

The entity determines the source of the [WRESET] and [TMRSYN] signals depending
upon the state of the TCO register (via TCS, TSE, ASGN and PS(2..0)). The [WRESET]
signal can be driven directly from the watchdog timer, or (for longer watchdog time-outs)
through the prescale counter. Similarly, the source of the timer increment signal
[TMRSYN] can be routed from the [TMRCLK] or [MCLK_4] signals directly through
the prescale counter.

For more information refer to the descriptions of the TIMRCNTR, TIMRSYNC and
WATCHDOG entities.

Technical Reference Manual 93 SLC1657

CLR

TMRCKI

PS(2..0)

ASGN

WDTTRP
0
1

TSE

TCS

TMRCLK

MCLK_4

CETMR

MRESET

RWT

MCLK

TEST

1
0

1
0

0
1

PSCCLR

CPSCCLR

D Q

7
6
5
4
3
2
1
0

8-BIT
PRESCALE
COUNTER

1
0

TIMRSYNC

PSC(7..0)

TMRMCK

TMRPSO

TMRSYN

WRESET

TPOINT

TMRINC

1
0

Figure 5-5. Block diagram of the PRESCALE entity.

5.14 PROGCNTR Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: BUC11CPP, MUX11X04, REG11CNN

The PROGCNTR entity handles all of the program counter and stack control. A block
diagram of the entity is shown in Figure 5-6, and a timing diagram in Figure 5-7.

The PROGCNTR entity was changed during the upgrade from the SLC1655 to the
SLC1657 architecture. The addressable program memory range was increased from nine
to eleven bits.

Features of the PROGCNTR entity include:

• A program counter.
• Two level stack and control logic (used during BSR and RET instructions).

After reset, the program counter presets to the top of memory at address 0x7FF. This is
the initial instruction address. A BRA instruction at 0x7FF causes the program to branch
to the new location. A NOP instruction at 0x7FF causes program execution to begin at
address 0x000.

The reset instruction address can be changed by modifying the hardware. This is done by
modifying the BUC11CPP counter to preset to some address other than 0x7FF. For ex-

Technical Reference Manual 94 SLC1657

ample, if only 512 words of program memory are used, then the reset address could be
changed to 0x1FF. For more information about changing the preset address, please refer
to the BUC11CPP entity and related description.

During most standard, single clock instructions (NOP, ADD etc.), the program counter
increments one count at every rising edge of [MCLK]. Some instructions, however, can
also modify the program counter. For example, ADD 0x02 adds the accumulator to the
lower eight bits of the program counter. During this activity the INSTRDEC entity as-
serts the [CEPRC] signal, which indicates that the program counter should be preloaded
from a concatenation of the [ALU(7..0)] and the [STR(6..5)] bus (i.e. bits IB0 and IB1).
Bit eight is set to zero at the same time. For more information about this activity, please
refer to the internal architecture description in Chapter 2.

During single cycle standard and bitwise instructions (INCSZ, BTSS, etc.), the program
counter increments normally. If a skip condition occurs, the INSTRDEC entity negates
[ENDCYC], thereby preventing a new instruction from being fetched. However, the
program counter will increment twice during these instructions, thereby flushing the in-
struction stream.

All branch instructions are double cycles. Op-codes for these instructions (BRA, BSR
and RET) are decoded by the PROGCNTR entity. During branch instructions the pro-
gram counter will increment during the first clock, and then preload with the new address
during the second. This flushes the instruction stream.

The BSR instruction causes a new program counter to be loaded during the second half of
the cycle. At the same time, the current (return) address is saved in one of two stack lo-
cations. The stack is implemented with eleven bit register entities REG11CNN. A stack
pointer (SP1 and SP2) determines which of the two stack registers to use. The stack
pointer always increments at the end of the first clock cycle.

The RET instruction causes a new program counter to be loaded from one of the two
stack registers, and is routed to the D input pins of the BUC11CPP counter using multi-
plexor MUX11X04. The current state of the stack pointer (SP1 and SP2) determines
which stack register to preload from.

During PWRDN cycles, the program counter is stopped, thereby reducing power con-
sumption.

Technical Reference Manual 95 SLC1657

Figure 5-6. PROGCNTR entity block diagram.

PRESET

PRELOAD

BUC11CPP

CE
INS(11..8)

CEPRC

ENDCYC

PWRDN

SP1

SP2

PROGCNTR
LOGIC

CCE

CEST2

CEST1

CPR

0x000

IMD(7..0)

IMD(8)

ALU(7..0)

MRESET

PCMS(1..0)

PCMUX(10..0)

0

2

1

3

MUX11X04

MCLK

D

STK2(10..0)

STK1(10..0)

PRC(10..0)

MCLK

CEST1
REG11CNN

C

MCLK

CEST2
REG11CNN

STR(6..5) IMD(10..9)

Technical Reference Manual 96 SLC1657

ALL DOUBLE NON-RET/BSR/BRA/PC CYCLES

ENDCYC

INS(11..0)

PRC(8..0)

PRC(8..0)

MCLK

ALL SINGLE CYCLES

PC

PC

PC+1

PC+1

NEW PC

PC+2

ALL SINGLE CYCLES RET/BSR/BRA & PC DESTINATION CYCLES

Figure 5-7. PROGCNTR timing diagram.

5.15 REG08CNN Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The REG08CNN21 entity is an eight-bit register with clock enable.

5.16 REG08CPN Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The REG08CPN entity is an eight-bit register with clock enable and synchronous preset.

21 REGWWXYZ entities specify a class of positive edge triggered registers where ‘WW’ is the width of

the register in bits (04, 08 etc.), ‘X’ specifies the presence of a clock enable (C: clock enable; N = no
clock enable), ‘Y’ specifies set, or reset logic (P: synchronous preset; R: synchronous reset; B: synchro-
nous preset and reset; S: asynchronous set; C: asynchronous clear; A: asynchronous set and clear; and N:
no set or preset) and ‘Z’ specifies output enable logic (O: output enable, N: no output enable).

Technical Reference Manual 97 SLC1657

5.17 REG11CNN Entity

Other entities that use this module: PROGCNTR
Other entities used by this module: NONE

The REG11CNN entity is an eleven-bit register with clock enable.

5.18 REG12CRN Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The REG12CRN entity is a twelve-bit register with clock enable and synchronous reset.

5.19 RESETGEN Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The RESETGEN entity provides two functions: (a) it resets the core and (b) it generates
the ‘TO’ (timeout) and ‘PD’ (power-down) bits. A block diagram of the entity is shown
in Figure 5-8.

There are three sources that can generate a microcontroller reset [MRESET]. They in-
clude the external reset [RESET], the watchdog reset [WRESET] and the ROM emula-
tion (programming) reset [PRESET]. Each of these signals must be asserted for at least
one [MCLK] cycle.

The RESETGEN entity provides an automatic power-up reset capability. This assumes
that the FPGA or ASIC target architecture guarentees that all flip-flops power-up in their
negated (logic ‘0’) state. Most architectures have this capability. However, the user may
wish to generate an external power-up reset instead.

The ‘TO’ bit is asserted whenever there is a power-up reset or an external reset ([RESET]
or [PRESET]) after a PWRDN instruction.

The ‘PD’ bit is asserted whenever there is a power-up reset or a non-PWRDN watchdog
reset [WRESET].

Technical Reference Manual 98 SLC1657

The ‘TO’ and ‘PD’ bits are monitored by software in the STATUS register. They can be
used to determine the cause of a reset (external, watchdog, etc.).

The ‘TO’ and ‘PD’ bits are both set after a emulation ROM programming reset [PRE-
SET]. This mimics a power-up reset after downloading new code.

The ‘TO’ and ‘PD’ bits can also be set with the reset watchdog instruction (RWT). This
capability is useful in some applications.

WRESET

PRESET

RESET

MCLK

D Q

PWRDN QD

MRESET

D Q

D Q

PDBIT

TOBITD Q

D Q

D Q

D Q

D Q D Q D Q D QTEST

'T
O'

 A
ND
 '
PD
'
LO

GI
C

SERES

SPRES

SWRES

SPDWN

RESET
STATE MACHINERWT

CWRESET

CPRESET

CR
ES
ET

NOTE: POWER-UP FLIP-FLOPS
ASSUME '0' LEVEL AT POWER UP.

POWERUP(3)

CERES

01

10

00

11

1

0
X

0

1

X

POWERUP

RESET STATE MACHINE

INPUTS: LMRESET
STATES: CERES, RSTATE TOBIT <= SERES or SPRES;

PDBIT <= (SWRES and not(SPDWN))
 or (SERES and not(SPDWN))
 or (SPRES);

'TO' and 'PD' LOGIC

Figure 5-8. Block diagram of the RESETGEN entity.

Technical Reference Manual 99 SLC1657

The power-up condition of these bits can potentially cause some portability problems.
Both must be powered up in the asserted (i.e. set) condition. To guarantee this operation,
the internal logic in the core assumes that the target device powers up all flip-flops in the
negated (i.e. zero) condition.

The circuit should be portable and reliable if all of the flip-flops are negated in response
to a power-up reset. If power-up state of your particular FPGA or ASIC architecture is
indeterminate, then (a) an external power-up function must be added to your circuit, and
the VHDL code altered appropriately or (b) the ‘TO’ and ‘PD’ bits should be ignored by
the application software.

For more information refer to the descriptions of the STATUS register and the
STATSREG entity.

5.20 STATSREG Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The STATSREG entity handles the logic for the STATUS register. This register includes
the condition code bits (‘Z’, ‘C’ and ‘NC’), the instruction bank select bits (‘IB0’, ‘IB1’)
as well as the ‘TO’ and ‘PD’bits.

The STATSREG entity was changed during the upgrade from the SLC1655 to the
SLC1657 architecture. The IB0 and IB1 bits were added to increase the addressable pro-
gram memory range from nine to eleven bits.

Figure 5-9 shows an example of how the three condition code bits (‘Z’, ‘C’ and ‘NC’) are
handled. During every instruction, the ALULOGIC entity presents the result of the con-
dition codes on [STA(6..0)]. For more information about the encoding of [STA(6..0)]
please refer to the functional description of the ALULOGIC entity.

ALU(2)

STA(5)

CESTA

STA(4)

0

1

ZERO BIT

MCLK

D

CE

STR(2)
Q

Technical Reference Manual 100 SLC1657

Figure 5-9. STATSREG logic for condition code ‘Z’ bit logic.

This is similar to how it handles the ‘C’ and ‘NC’ bits.

Each condition code bit has both a result condition and a clock enable signal. For exam-
ple, during a NOT instruction the ‘Z’ bit is set. If the result of the NOT instruction is
zero, the ALU asserts the ‘Z’ bit [STA(4)]. If the result is not zero, the ALU negates the
‘Z’ bit [STA(4)]. In either case, the ALU asserts the ‘Z’ bit clock enable signal
[STA(5)], which indicates to the STATSREG entity that it should latch the bit. Since the
NOT instruction does not alter the ‘C’ and ‘NC’ bits, [STA(1)] and [STA(3)] remain ne-
gated.

If the instruction requires writing to the STATUS register, then the result presented by
the ALULOGIC entity has precedence over the write data itself. For example, a CLR
0x03 instruction will result in the ‘Z’ bit being set. For this reason, the consequences of
writing to the STATUS register should be carefully evaluated. Instructions that do not
set the condition code bits (such as BCLR and BSET) are recommended for this applica-
tion.

The STATUS register ‘TO’ and ‘PD’ bits are generated by the RESETGEN entity. The
bits are read-only, and are not affected by a write to the STATUS register.
For more information refer to the description of the RESETGEN entity.

5.21 TCOPTREG Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: NONE

The TCOPTREG entity contains the timer/counter option register. The lower six bits are
composed of a six-bit register with clock enable and synchronous preset. Bit six is a one-
bit register with clock enable.

5.22 TIMRCNTR Entity

Other entities that use this module: TOPLOGIC
Other entities used by this module: BUC08NNP, PRESCALE, WATCHDOG

The TIMRCNTR entity includes all of the components for the timer/counter. Figure 5-10
shows the various parts. For more information, refer to the descriptions of the
BUC08NNP, PRESCALE and WATCHDOG entities.

Technical Reference Manual 101 SLC1657

TMRCLK

MCLK_4

TCS

ALU(7..0)

MRESET

MCLK_16

WDT

RWT

TEST

CETMR

MCLK

WATCHDOG

WDTTRP

WRESET

TPOINT

BUC08NNP

PRESCALE

TMRINC

TMR(7..0)

TSE

ASGN

PS(2..0)

Figure 5-10. TIMRCNTR entity block diagram.

The WATCHDOG entity includes a 15-bit ripple counter for creating the watchdog
timer. The watchdog timer is enabled by signal WDT, which is set in the TCO register.
The timeout delay of the watchdog is determined by the clock frequency [MCLK / 16]
and the use of the prescaler. When the watchdog trips, signal [WDTTRP] is asserted. If
the prescaler is not attached to the watchdog (as indicated by the [ASGN] signal), then
output [WRESET] is asserted, and the core is reset. If the prescaler is attached to the
watchdog, then the watchdog can be programmed to reset the microcontroller after multi-
ple assertions of [WDTTRP].

If the PRESCALE entity is attached to the timer (as indicated by the [ASGN] signal),
then it can be used to prescale the source of the timer/counter input. In this mode, the
source can be either the [MCLK_4] or the [TMRCLK] pins. Every event from the output
of the PRESCALE entity increments the BUC08NNP counter by one bit.

The BUC08NNP entity can be preloaded by any instruction. It is not affected by reset.

5.23 TIMRSYNC Entity

Other entities that use this module: PRESCALE
Other entities used by this module: NONE

Technical Reference Manual 102 SLC1657

The TIMRSYNC entity is used by the PRESCALE entity. Its purpose is to generate a
single increment pulse [TMRINC] after the falling edge of every timer/counter source
signal.

Figure 5-11 shows the timing, block and state diagrams for the TIMRSYNC entity. The
output of the timer/counter module [TMRSYN] is sampled at the rising edge of [MCLK]
with a flip-flop. The flip-flop is used to prevent metastable and race conditions from en-
tering the TIMRSYNC entity, as the [TIMRSYN] input can be asynchronous to [MCLK].

Once the [TMRSYN] input is synchronized, it is passed to the TIMRSYNC state ma-
chine using signal [SYNCIN]. The state machine monitors this input, and generates a
single output pulse [TMRINC] after every falling edge on [SYNCIN]. This increments
the timer counter at the next rising edge of [MCLK].

The timing diagram also shows why there is a minimum high and low time specified for
the external timer/counter input. For example, when the TIMRSYNC entity is driven by
[TMRCLK], then the input signal must be high for at least one positive [MCLK] edge,
and low for another. If [TMRCLK] is synchronized with [MCLK] external to the core,
then the signal must meet the setup times for the synchronizer flip-flop. If [TMRCLK] is
asynchronous to [MCLK], then the high and low times must exceed the period of the
[MCLK] frequency.

The TIMRSYNC state machine is unaffected by reset. The [TEST] input on the
TIMRSYNC entity is used to reset the state machine to an initial condition for test bench
purposes, and should be negated during normal operation. This is because the
TIMRSYNC state machine is a ‘self-starting’ type (i.e. any initial state will be tolerated).

Technical Reference Manual 103 SLC1657

STATE DIAGRAM

00

10

BLOCK DIAGRAM

TIMRSYNC

COUNT+1

TIMING DIAGRAM

INPUTS: SYNCIN
STATES: LEVEL, TMRINC

0

TEST 11
X

1

1

TMRSYN

SYNCIN

TMRINC

TMR(7..0)

MCLK

TMRSYN

MCLK
D

TEST

COUNT

Q
SYNCIN

0

0
01

1

TMRINC

COUNT+2 COUNT+3

Figure 5-11. Timing, block and state diagrams for the TIMRSYNC entity.

Technical Reference Manual 104 SLC1657

5.24 TOPLOGIC Entity

Other entities that use this module: NONE
Other entities used by this module: See Figures 5-12 and 5-13.

The TOPLOGIC entity is the highest hierarchical module, and ties together all of the
other components in the microcontroller. Figure 5-12 shows a block diagram of the en-
tity, and Figure 5-13 shows the hierarchical relationship of this entity to the other entities
that it uses.

The test bench for the TOPLOGIC entity uses a series of test vector files. These are read
by the test bench, and include:

• VECTADDR.TXT
• VECTIBNK.TXT
• VECTINIT.TXT
• VECTINST.TXT
• VECTPORT.TXT
• VECTPROG.TXT
• VECTRBNK.TXT
• VECTTIMR.TXT

5.25 WATCHDOG Entity

Other entities that use this module: TIMRCNTR
Other entities used by this module: NONE

The WATCHDOG entity has a 15-bit ripple counter which counts up after an [MRESET]
or [RWT] reset. When the counter reaches its terminal count, the output [WDTRP] is
asserted if bit [WDT] is asserted. The counter increments at every rising edge of
[MCLK_16].

The ripple counter has an asynchronous reset. This reset is tripped whenever the [MRE-
SET] or [RWT] signals are asserted.

For more information refer to the descriptions of the PRESCALE, TIMRCNTR and
TIMRSYNC entities.

Technical Reference Manual 105 SLC1657

 Figure 5-12 TOPLOGIC entity block diagram.

PR
C(
7.
.0
)

TM
R(
7.
.0
)

ID
X(
7.
.0
)

PT
0(
7.
.0
)

PT
ST
B0

PT
OU
T0
(7
..
0)

PT
ST
B2

PT
2(
7.
.0
)

PT
1(
7.
.0
)

PT
OU
T2
(7
..
0)

ST
R(
7.
.0
)

CE
AC
C

AL
U(
6.
.0
)

RW
T

IN
S(
11
..
0)

SE
L(
1.
.0
)

AL
F(
3.
.0
)

AD
R(
6.
.0
)

ID
X(
6.
.0
)

WE
RA
M

MC
LK

ST
A(
4)
,(
6)

IN
ST
RD
EC

CE
PT
1

CE
TC
O

PW
RD
N

EN
DC
YC

CE
TM
R

CE
ST
A

CE
PT
2

CE
PC
1

CE
PR
C

CE
PT
0

CE
PC
2

CE
PC
0

CE
ID
X

MC
LK

CE
ID
X

IN
DE
XR
EG

WR
ES
ET

AS
GN

MC
LK
_4

MC
LK

PS
(2
..
0)

TI
MR
CN
TR

CE
TM
R

RW
T

MC
LK
_1
6

MR
ES
ET

TM
RC
LK

TS
E

WD
T

TC
S

CI
N

CE
ST
A

ST
AT
SR
EG

TO
BI
T

PD
BI
T

MC
LK

ST
A(
5.
.0
)

AL
U(
7.
.0
)

0x
00

IN
S(
11
..
8)

AL
U(
7.
.0
)

AL
U(
7.
.0
)

AL
U(
7.
.0
)

PT
IN
1(
7.
.0
)

CL
OC
KD
IV

RE
G1
2C
RN

MC
LK
_1
6

MC
LK

MC
LK
_4

TE
ST

IN
S(
11
..
0)MC

LK

EN
DC
YC

MR
ES
ET

RO
M(
11
..
0)

IN
ST
RU
CT
.

RO
M

2,
04
8
x
12

MC
LK
_1
6

PR
ES
ET

PT
IN
0(
7.
.0
)

AL
U(
7.
.0
)

AL
U(
7.
.0
)

PT
OU
T1
(7
..
0)

PT
IN
2(
7.
.0
)

PT
ST
B1

PO
RT
SR
EG

(P
OR
T
1)

MC
LK

CE
PT
1

MC
LK

CE
PT
0

PO
RT
SR
EG

(P
OR
T
0)

MC
LK

MC
LK

PO
RT
SR
EG

(P
OR
T
2)

CE
PT
2

PR
C(
10
..
0)

CE
PR
C

MR
ES
ET

PW
RD
N

PR
OG
CN
TR

(W
/S
TA
CK
)

ST
A(
6.
.0
)

AL
U(
7.
.0
)

PS
(2
..
0)

PC
OU
T2
(7
..
0)

TS
E

AS
GN

PS
(2
..
0)

WD
T

TC
S

4

AD
R(
2.
.0
)

WR
ES
ET

PW
RD
N

MC
LKRW
T

TE
ST

RE
SE
TG
EN

31 0

AC
C(
6.
.0
)

MC
LK

PR
ES
ET

RE
SE
T

TC
OP
TR
EG

MR
ES
ET

MC
LK

AC
C(
7.
.0
)

CE
TC
O

MR
ES
ET

CE
PC
2

RE
G0
8C
PN

(P
C2
)

PD
BI
T

TO
BI
T

TE
ST
IN

PW
RD
N

TE
ST

SL
EE
P

RE
G0
8C
PN

(P
C1
)

RE
G0
8C
PN

(P
C0
)

AC
C(
7.
.0
)

MC
LK

MR
ES
ET

MC
LK

MR
ES
ET

MC
LK

AC
C(
7.
.0
)

CE
PC
0

MR
ES
ET

CE
PC
1

X8

X8

PC
OU
T0
(7
..
0)

X8

PC
OU
T1
(7
..
0)

AC
C(
7.
.0
)

AL
F(
3.
.0
)

2

5

MUX08X08

67

SE
L(
1.
.0
)

AC
C(
7.
.0
)

MUX08X04

01
IN
S(
7.
.0
)

GP
 R
AM

72
 B
YT
E

AL
U(
7.
.0
)

2
WE
RA
M AD
R(
6.
.0
)

RM
X(
7.
.0
)

3
GP
(7
..
0)

AL
U(
7.
.0
)

AC
C(
7.
.0
)

CE
AC
C

MC
LK

AR

ALULOGIC

IN
S(
7.
.5
)

RE
G(
7.
.0
)

RE
G0
8C
NN

(A
CC
UM
)

CI
N

ST
A(
6.
.0
)

ST
R(
7.
.0
)

SL
C1
65
7
TO
PL
OG
IC
 E
NT
IT
Y

Technical Reference Manual 106 SLC1657

Figure 5-13. TOPLOGIC entity hierarchy.

REG08CPN.VHD

REG12CRN.VHD

RESETGEN.VHD

STATSREG.VHD

TCOPTREG.VHD

TIMRCNTR.VHD

REG08CNN.VHD

WATCHDOG.VHD

TIMRSYNC.VHD

BUC08NNP.VHD

PRESCALE.VHD

INDEXREG.VHD

CLOCKDIV.VHD

INSTRDEC.VHD

MUX08X04.VHD

MUX08X08.VHD

PORTSREG.VHD

PROGCNTR.VHD

ALULOGIC.VHD

TOPLOGIC.VHD

BUC11CPP.VHD

REG11CNN.VHD

MUX11X04.VHD

BINADDER.VHD

Technical Reference Manual 107 SLC1657

6.0 Implementation on the Xilinx Spartan 2 FPGA

This chapter describes the steps needed to integrate the SLC1657 onto a Xilinx Spartan 2
FPGA. An exercise is presented whereby a four function calculator is implemented on an
evaluation board.

The purpose of this chapter is to:

• Learn about the SLC1657 Evaluation Kit for the Xilinx Spartan 2 FPGA.
• Learn the steps needed to integrate a simple system-on-chip.
• Demonstrate how to simulate the TOPLOGIC entity.
• Demonstrate how to synthesize an IP core.
• Create the register RAM using Xilinx Spartan 2 distributed RAM.
• Create the instruction ROM using Xilinx Spartan 2 block RAM.
• Create a parallel port interface for download and test of application code.
• Integrate the TOPLOGIC core with RAM, ROM and parallel port interface.
• Download and run a ‘C’ application program for a 10-key calculator.
• Create a fixed PROM.

The following hardware and software tools are used in the exercises:

• PeakVHDL simulation and synthesis tools from Protel International.
• Xilinx Alliance Series Place & Route Software.
• SLC1657 evaluation kit for Xilinx Spartan 2 FPGA.
• CC5X ‘C’ compiler from B Knudsen Data.
• DOWNLOAD software for testing application code.
• MAKEXCOE software for integration of a ROMable application software.
• PROM programmer22.

22 The Needhams EMP-30 PROM programmer was used for the exercise (www.needhams.com).

Technical Reference Manual 108 SLC1657

6.1 Evaluation Kit for Xilinx Spartan 2 FPGA

The evaluation kit for Xilinx Spartan 2 FPGA allows the user to evaluate and test the
SLC1657 microcontroller. The kit includes:

• Evaluation board with Xilinx Spartan 2 XC2S50-5 FPGA (see Figure 6-1).
• PROMs for demonstration and calculator functions.
• 16 x 1 LCD display.
• 20-key keypad.
• 5-MHz crystal oscillator.
• 1 KHz RC oscillator.
• 9V battery pack.
• Demonstration program.
• Calculator program.
• PC parallel port download cable and software.
• Technical reference manual.

The evaluation board comes with two embedded software programs. These are ‘XDMO’,
a generic demonstration PROM and ‘XCLC’, a calculator program. Each resides on a
PROM, which contains both the hardware for the SLC1657 microcontroller and the soft-
ware application programs.

6.1.1 XDMO Software

The XDMO embedded ROM program demonstrates how the SLC1657 can be completely
integrated into an FPGA. This includes RAM, ROM and I/O elements. The XDMO em-
bedded ROM demonstration displays the features of the core, and also has a ‘stopwatch’
function. Follow these simple instructions to operate XDMO:

1) Remove the evaluation board from the anti-static bag23.

2) Verify that the 8-pin ROM labeled ‘XDMO’ is located in DIP socket U5 (to the

right of the LCD display). There is a ‘spare’ PROM socket located at U2 (at the
top of the board). This socket is not active, and only serves as a holder for the
unused PROM. You might need to switch the PROMs around.

3) Connect the +9 VDC battery pack to the evaluation board using connector J1.

23 The board should be handled at an approved anti-static workstation.

Technical Reference Manual 109 SLC1657

4) Verify that the core boots up, and that display on the evaluation board reads
‘SILICORE SLC1657’. This indicates that the microcontroller inside of the
FPGA has reset and is running the application code.

5) Push switch ‘S17’ (the switch marked ‘0’).

6) The features of the core scroll by on the display.

7) Push switch ‘S18’ (the switch marked ‘.’).

8) Verify that a counter display “00:00 0/10th” appears. Pushing switch S18 (‘.’)

always starts the ‘stopwatch’ application. Pushing switch S19 (‘+/-’) starts the
stopwatch, and pushing ‘S20’ (‘=’) stops it. The stopwatch can be cleared by
pushing ‘S18’ (‘.’) again. The following table summarizes the switches used by
XDMO:

Table 6-1. XDMO Key Functions

Switch Label Action
S17 ‘0’ Marquee of features
S18 ‘.’ Initiate/clear stopwatch
S19 ‘+/-‘ Start stopwatch
S20 ‘=’ Stop stopwatch

6.1.2 XCLC Software

The XCLC calculator software places the evaluation board into its calculator mode. In-
stall the XCLC PROM into U5 and operate the evaluation board as a four function calcu-
lator.

Technical Reference Manual 110 SLC1657

Figure 6-1. Evaluation board for Xilinx Spartan 2 FPGA.

Technical Reference Manual 111 SLC1657

6.2 The XSP2EVAL Exercise

An exercise is given below to better understand the operation of the SLC1657. This cre-
ates a system-on-chip called ‘XSP2EVAL’, which stands for Xilinx SPartan 2 EVALua-
tion system. It’s a system-on-chip (SoC) that we’ll use to design and run a four function
calculator.

The XSP2EVAL system uses several VHDL entities. These are described in detail in
section 6.5 (below). The user is encouraged to study the descriptions there, along with
the VHDL source code. These entities include:

• XSP2EVAL: Xilinx Spartan 2 Evaluation
• TOPLOGIC: TOP LOGIC design for the SLC1657.
• REGISRAM: REGISter RAM.
• INSTRROM: INSTRuction ROM.
• SEMRMINT: Serial Emulation ROM Interface.
• IBUF, OBUF, IOBUF: I/O pin drivers for Xilinx Spartan 2.

6.2.1 STEP 1 – Simulate the TOPLOGIC Entity

The first step to creating the SLC1657 is to simulate the TOPLOGIC entity. This famil-
iarizes the user with the simulation tools, the SLC1657 IP core and the general operation
of all components. This step is identical for all target devices such as Agere, Altera and
Xilinx.

Using the Protel PeakVHDL simulation tool, perform the following operations:

1) Create a new directory called ‘TLTEST’. [One has been created for you in the

EXAMPLES folder if you wish to use it].

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project TLTEST, and put it into the ‘TLTEST’ folder.

3) Add all of the modules in the TOPLOGIC entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the TOPLOGIC entity
in Chapter 5. Each entity can be found in its own unique folder in the
‘VHDL_source’ directory.

When simulating with the PeakVHDL product, be sure that the highest level mod-
ule in the hierarchy is the TOPLOGIC test bench (TSTBENCH.VHD from the
TOPLOGIC folder).

Technical Reference Manual 112 SLC1657

Also, the TOPLOGIC test bench simulation will need the corresponding test vector
files. These are the files with the ‘*.txt’ extension in the TOPLOGIC folder, and
should be copied into the TLTEST directory.

When finished, the project window should look something like that shown in Figure
6-2.

4) Simulate the design using the manufacturers directions. At this point the TOP-
LOGIC entity should simulate with no errors.

Figure 6-2. PeakVHDL project window.

6.2.2 STEP 2 – Create REGISRAM (Register RAM)

The register RAM is a 128 x 8-bit synchronous memory. It must conform to the FASM
guidelines described elsewhere in this manual. There are many ways to build memories,
but the simplest is to use the automatic memory generation software that is supplied with
most FPGA place & route tools.

Technical Reference Manual 113 SLC1657

Xilinx supplies such a tool with their Alliance Series software. It’s called CORE Genera-
tor, and is capable of creating the exact memory that’s needed. In this example the regis-
ter RAM will be formed from distributed RAM, meaning that the logic look up tables
(LUTs) will be re-configured as RAM. This is opposed to block memory, which is
formed from dedicated memory cells on the FPGA. Using the Xilinx CORE Generator
tool, create the REGISRAM entity:

1) Create a directory called ‘REGISRAM’. [One has been created for you in the

Xilinx examples folder].

2) Open the Xilinx CORE Generator tool, and set it up to create a synchronous

RAM in the REGISRAM folder. Set up the options thusly:

Device type: Spartan 2
File format: VHDL
Tool type: Other (Protel)
Netlist bus format: B(I)
Memory type: distributed
Component name: regisram
Depth: 128
Data width: 8
Memory type: single port RAM
MUX construction: LUT based
Input options: non-registered
Layout: create RPM

3) Generate REGISRAM.

4) Verify that the REGISRAM folder that you created has a file named ‘regis-

ram.edn’ in it. This is the EDIF file for the RAM (that we’ll use later).

6.2.3 STEP 3 – Create INSTRROM (Instruction ROM)

In the Xilinx Spartan 2, the instruction ROM is actually formed from synchronous block
RAMs. This will be configured by the Xilinx Core Generator tool (used above) to form a
2,048 x 12-bit instruction memory. However, the term ‘instruction ROM’ will be used
here, as it is fundamentally a read-only memory.

The XSP2EVAL core implements a parallel port interface called SEMRMINT. This in-
terface allows software to be downloaded to the instruction ROM, thereby making it pos-
sible to send application code to the microprocessor. This is very useful for software de-
velopment purposes.

Technical Reference Manual 114 SLC1657

For now, we’ll rely on the download capability to get new application code into the mi-
crocontroller. However, later on the INSTRROM entity will be initialized with our ap-
plication code. Using the Xilinx CORE Generator tool, create the INSTRROM entity:

1) Create a directory called ‘INSTRROM’. [One has been created for you in the

Xilinx examples folder].

2) Open the Xilinx CORE Generator tool, and set it up to create a synchronous

RAM in the INSTRROM folder. Set up the options thusly:

Device type: Spartan 2
File format: VHDL
Tool type: Other (Protel)
Netlist bus format: B(I)
Memory type: single port block memory
Component name: instrrom
Depth: 2048
Data width: 12
Port configuration: read and write
Global init value: 0 (leave the initialization file box unchecked).

3) Generate INSTRROM.

4) Verify that the INSTRROM folder that you created has a file named

‘instrrom.edn’ in it. This is the EDIF file for the instruction ROM (that we’ll use
later).

6.2.4 STEP 4 – Synthesis

The highest level entity/architecture pair in this system is the VHDL source file named
‘XSP2EVAL’. This file ties all of the parts of the system together as described in the
block and hierarchy diagrams for the XSP2EVAL entity below.

Using the Protel PeakVHDL synthesis tool, perform the following operations:

1) Create a new directory called ‘XSP2EVAL’.

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project XSP2EVAL, and put it into the ‘XSP2EVAL’ folder.
[This is already done for you in the Xilinx examples folder if you wish to use that.]

3) Add all of the modules in the XSP2EVAL entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the XSP2EVAL entity
later in this chapter. The entities relating to TOPLOGIC (e.g. ALULOGIC.VHD)

Technical Reference Manual 115 SLC1657

can be found in its own unique folder in the ‘VHDL_source’ directory. The entities
relating to Xilinx Spartan 2 implementation (e.g. SEMRMINT.VHD) can be found
in ‘Xilinx’ directory.

4) Move the following files into the XSP2EVAL directory: regisram.edn and

instrrom.edn. These were created earlier, and are contained in the REGISRAM and
INSTRROM directories (respectively).

5) Select ‘Spartan 2 Series (EDIF)’ in the PeakVHDL synthesis options. Also un-

check ‘Top Level Module (insert I/O buffers)’. [Note: the I/O buffers are contained
in the XSP2EVAL entity, and must not be added by the PeakVHDL synthesis tool].

6) Synthesize the XSP2EVAL system with PeakVHDL.

7) Look in the synthesis log file, and verify that no errors were generated by

PeakVHDL.

8) Verify that file ‘XSP2EVAL.EDN’ is present in the directory. This is the EDIF file

created by PeakVHDL.

6.2.5 STEP 5 – Place & Route the Design

The EDIF file created in STEP 4 contains most of the microprocessor logic. The next
step is to place and route the design on the Xilinx Spartan 2 FPGA chip. In this example,
we’ll use the Xilinx Alliance Series software to place and route the design.

Using the Xilinx Alliance Series software tool, perform the following operations:

1) Boot the Alliance design manager.

2) Create a new project. Select ‘XSP2EVAL.EDN’ as the input file. This was the file

that was created in STEP 4, and is the input file for the place and route software.

3) Under ‘Part Selector’, select the following options:

 Family: SPARTAN2
 Device: XC2S50
 Package: PQ208
 Speed Grade: -5

4) Under ‘Constraints File’, select ‘Custom’, and then browse for a file called

‘XSP2EVAL.UCF’. This is the user constraints file that contains pin locations,
timing specifications and so forth.

Technical Reference Manual 116 SLC1657

5) Place and route the design. Look in the Place & Route report (generated by the
Xilinx Design Manager), and verify that there were no errors generated. This re-
port also has statistics for the number of gates used, and so forth.

6.2.6 STEP 6 – Create the PROM

The final step in implementing the design is to create a PROM (Programmable Read
Only Memory). The PROM contains all of the logic necessary to implement the
SLC1657 microcontroller. Follow the directions for the Xilinx Alliance Series software
tool to create the PROM, and program it with your PROM programming system.

The PROM file that we created is formatted as an Intel Hex device, and has a filename of
‘XSP2EVAL.mcs’ under the examples directory.

The SLC1657 Evaluation Board for Xilinx Spartan 2 uses a Xilinx 1701LPC PROM.
Program the PROM and insert it into socket U5.

6.3 Using the Emulation ROM (Download) Capability

The steps listed in section 6.2 are used to create a complete SLC1657 system on the Xil-
inx Spartan 2 evaluation board. That system was programmed onto a PROM, and con-
tains the hardware for the microcontroller. The circuit contains an emulation ROM capa-
bility. This allows software instructions to be downloaded into the board over a parallel
port cable.

In this example, a sample software program is downloaded over the parallel port cable.
To demonstrate its use, a calculator demonstration program called ‘CALCDEMO.C’ is
used. This turns the evaluation board into a four function calculator.

Before downloading, inspect the program called ‘CALCDEMO.C’. As you will see, it
contains standard ‘C’ source code. This program is compiled using the ‘CC5X’ compiler
available from B. Knudsen Data (Trondheim, Norway). The compiler produces a file

- IMPORTANT –
The Xilinx 1701LPC PROM can be configured for active low or active

high reset. The default on most PROM programmers is active high.
However, the evaluation board requires that the PROM be configured
for an active low reset. If you fail to do this, then the board will not

boot up.

Technical Reference Manual 117 SLC1657

called ‘CALCDEMO.HEX’, which is the Intel Hex formatted file. Both the ‘C’ source
file and the compiled file are provided in the EXAMPLES directory.

Software is downloaded with a program called ‘DOWNLOAD.EXE’. This is an execu-
table file for use under the DOS operating system. DOWNLOAD.EXE reads the Intel
Hex formatted file and sends it out the parallel port cable.

Follow these simple instructions to operate the emulation ROM.

1) Remove the evaluation board from the anti-static bag24.

2) Verify that an 8-pin PROM is loaded into the socket located at ‘U5’. All of the

PROMs supplied with the SLC1657 demo board include the emulation ROM
capability. Also, there is a ‘spare’ PROM socket located at U2. This socket is
not active, and only serves as a holder for an unused PROM.

3) Connect the parallel port download cable to the printed circuit board at connec-

tor J2. Connect the other end of the cable to the parallel port connector on a PC
computer. This cable is a standard Centronics compatible parallel port cable.

4) Connect the +9 VDC battery pack to the evaluation board.

5) If you are using the PROM created above, then the display will show eight

‘blanks’ on the left hand side of the display. At this point the microcontroller
has booted up, but its emulation ROM is empty.

6) On the PC computer, get into DOS mode (if running Windows 95/98). Locate

the directory with the program called DOWNLOAD.EXE. Type the following
at the DOS command prompt (using the correct path):

download lpt1 c:\slc1657\xilinx\examples\calcdemo\calcdemo.hex

 This causes the object file called ‘calcdemo.hex’ to be downloaded over the par-

allel port cable. Once the download is complete, the core will automatically re-
set and run the program.

 In the command line syntax, ‘lpt1’ refers to the parallel port number. If ‘lpt2’ is

used (or some other port), substitute the port number.

 If you have the ‘CC5X’ compiler, then you can edit ‘calcdemo.c’ and compile

it. The compiler creates the Intel Hex formatted file called ‘calcdemo.hex’,
which can be immediately downloaded to the evaluation board.

24 The board should be handled at an approved anti-static workstation.

Technical Reference Manual 118 SLC1657

7) Verify that the core boots up, and that display on the evaluation board reads ‘0’.

This indicates that the microcontroller inside of the FPGA has reset and is run-
ning the application code.

8) Try the calculator.

6.4 Creating an Embedded PROM

This section describes how to create an embedded ROM. The embedded PROM contains
information for both hardware and software.

The PROM created in the example of section 6.1 (above) causes the SLC1657 to boot up
without any instruction memory. Under that scenario, software is downloaded and tested
over the parallel port cable. However, once the user is satisfied with the code, then it can
be embedded into the PROM. This section describes how to create the same ROM, but
instead with embedded software attached.

For this example, we’ll use the same ‘CALCDEMO.HEX’ file to create the embedded
ROM. However, in this case the ‘CALCDEMO.HEX’ file will be converted to a Xilinx
‘.COE’ file. The Xilinx ‘.COE’ file is used to initialize the instruction ROM
(INSTRROM).

To create the Xilinx ‘.COE’ file, perform the following operations:

1) Move the file ‘calcdemo.hex’ into the directory called ‘MAKEXCOE’.

2) Convert the file by typing: MAKEXCOE CALCDEMO.HEX.

3) The conversion utility will create a file called CALCDEMO.COE. This file will

not be used to initialize the ROM.

When creating the embedded ROM, follow all of the same steps as shown in section 6.1
However, substitute the following directions for those given in STEP 3 (creating
INSTRROM). The modified instructions are:

- IMPORTANT –
DOWNLOAD.EXE is intended to be operated from a DOS environ-
ment, including the variants under Windows 95 and 98. However, it

will not work with Windows NT. Microsoft has implemented security
walls on Windows NT to prevent access to the parallel port.

Technical Reference Manual 119 SLC1657

Using the Xilinx CORE Generator tool, create the INSTRROM entity:

1) Create a directory called INSTRROM_CALCDEMO. [This step has already

been performed for you in the EXAMPLES directory.

2) Open the Xilinx CORE Generator tool, and set it up to create a synchronous

RAM in the INSTRROM folder. Set up the options thusly:

Device type: Spartan 2
File format: VHDL
Tool type: Other (Protel)
Netlist bus format: B(I)
Memory type: single port block memory
Component name: instrrom
Depth: 2048
Data width: 12
Port configuration: read and write
Load init value: check box
Load file: enter the path for the calcdemo.coe file created above

3) Generate INSTRROM.

4) Verify that the INSTRROM_CALCDEMO folder that you created has a file

named ‘instrrom.edn’ in it. This is the EDIF file for the instruction ROM (that
we’ll use later).

5) Repeat the rest of the steps for creating the ‘XSP2EVAL’ above. For your convi-

enience, these steps have already been done for you in the Examples directory
under ‘XSP2EVAL_CALCDEMO’.

Technical Reference Manual 120 SLC1657

6.5 VHDL Entity Reference for XILINX SPARTAN 2

The VHDL entities used in the Xilinx Spartan 2 Evaluation project are given below.
These are specific to this implementation. However, the TOPLOGIC entities (given in
Chapter 5) are also used in the example.

6.5.1 LPFILTER Entity

Other entities used by this module: NONE

The LPFILTER entity is a digital low-pass filter. Each of the EMROMINT program-
ming inputs is conditioned by LPFILTER. This prevents noise from the PC-compatible
download cable from entering the core. Figure 6-3 shows how the filter works.

The filter input is synchronized to the filter clock [MCLK_16] by a D type flip-flop. This
prevents metastable and race conditions from occurring within the filter itself. Once the
input is synchronized, it enters the LPFILTER state machine. The state machine is de-
signed so that the input signal must be in its asserted or negated state for at least two
[MCLK_16] cycles. This causes short (high frequency) pulses to be rejected, and long
(low frequency) signals to be accepted.

Figure 6-3 also shows the filter response. Very low frequencies are passed without at-
tenuation. As the speed of the input signal increases to MCLK_16 / 3, the filter begins to
reject the input signal. Signals faster than MCLK_16 are rejected25.

For example, when the SLC1657 clock [MCLK] operates at 5.00 MHz, the filter passes
all frequencies up to about 0.104 MHz. As the input signal increases beyond that point,
the low-pass filter begins rejecting the input. Signals faster than 0.313 MHz are totally
rejected.

25 If the input signal frequency exceeds MCLK_16 x 2, then the output of the filter will start to pass some

signal. However, the noise found on the parallel cable does not exhibit this behavior and is not a prob-
lem.

Technical Reference Manual 121 SLC1657

BLOCK DIAGRAM

TIMING DIAGRAM

0

STATE DIAGRAM

INPUTS: CINPUT
STATES: COUNT, OUTPUT

1

0

01

TEST

1

11

1

1

00

0

CLK

10

0

OUTPUT

CLK

INPUT

SYNCHRONIZER FLIP-FLOP
REQUIRED TO PREVENT
RACE AND METASTABLE

CONDITIONS

D

TEST

INPUT
CINPUT

Q

REJECTEDREJECTED

CLK

FREQUENCY RESPONSE

CLK/3

OUTPUT
RESPONSE

1:1

INPUT
FREQ

LPFILTER
STATE

MACHINE

OUTPUT

ACCEPTED

Figure 6-3. LPFILTER entity operation.

Technical Reference Manual 122 SLC1657

6.5.2 MUX11X02 Entity

Other entities used by this module: NONE

The MUX11X0226 entity multiplexes two, 11-bit buses.

6.5.3 SEMRMINT Entity

Other entities used by this module: LPFILTER, MUX11X02

The SEMRMINT (Serial Emulation RoM INTerface) entity provides an external inter-
face for 2,048 x 12 ROM emulation. It allows programming through four external pins,
and is intended for FPGA devices.

The entity also provides signal conditioning for the Xilinx block memory. This memory
uses a clocking scheme that is not directly compatible with the SLC1657 ROM interface.
The SEMRMINT entity provides a compatible, synchronous interface between the two.

Figure 6-4 shows a block diagram of the SEMRMINT entity. During normal operation
the external [PROG*] input is negated. This negates the internal [PRESET] signal, and
allows the core to run normally. Addresses from the program counter are routed to the
RAM address lines through MUX11X02. The RAM then generates instructions which
appear at its [ADR(10..0)] output.

Instructions can be downloaded to the core by connecting a programming cable to the
programming enable [PROG*], programming clock [PCLK*], programming data
[PDAT*], and programming latch [PLCH*] pins. From a PC-compatible computer this
can be done via a Centronics parallel port cable in conjunction with the download soft-
ware.

Figure 6-5 shows the instruction download timing. The download begins when the
[PROG*] signal is asserted. This has the effect of (a) resetting the microcontroller and
(b) changing the source of the address bus from the programming counter to the
SEMRMINT download circuit.

Once [PROG*] is asserted, the download data is presented to the [PDAT*] input. This is
then clocked into the SEMRMINT shift register using the [PCLK*] pin. Address and
data information is then clocked into the core using the protocol shown in Figure 6-5.

26 MUXWWXSS specify a class of multiplexors where ‘WW’ is the width of input and output buses and

‘SS’ specifies the number of selectors.

Technical Reference Manual 123 SLC1657

All of the inputs are conditioned by a low pass filter (LPFILTER entity). This prevents
spurious noise (which is common on PC parallel port cables) from corrupting incoming
data.

When a complete address and data pair is loaded into the shift register, it is latched into
the programming RAM using the [PLCH*] signal. A state machine conditions the write
pulse, thereby making it compatible with the Xilinx block memory. At this time the se-
quence can be repeated until all or part of the 2,048 x 12 RAM has been loaded. Once
loaded, the [PROG*] input is negated, and the core starts up normally (using the new pro-
gram).

Figure 6-4. SEMRMINT block diagram.

01

MUX11X02

PRESET

DIN(11..0)ADR(10..0) IWE

LPRC(10..0)

PRC(10..0)

TEST

MCLK_16

SHIFT
REGISTER

DIN

LPROG

LPDAT

LPCLK

LPFILTER

LPFILTER

PLCH*

PROG*

VCC

LPFILTER

LPFILTER
PCLK*

PDAT*

VCC

VCC

VCC

WRITE
PULSE
STATE
MACHINE

BMCLK

LC
H

Technical Reference Manual 124 SLC1657

Figure 6-5. SEMRMINT instruction download.

The entity also converts the SLC1657 instruction ROM cycles into a cycle that is com-
patible with the Xilinx block memory. This conversion is shown in the timing diagram
of Figure 6-6.

The left side of the figure shows the instruction fetch cycles. The TOPLOGIC core gen-
erates an instruction address after every rising edge of [MCLK]. This clock is inverted to
create [N_MCLK] so that the Xilinx block RAM latches the address near to the falling
edge of [MCLK]. Once latched, the RAM accesses the instruction, and sends it to its
data output port. The data must then make its way back to the TOPLOGIC core by the
next rising edge of [MCLK]. This makes the Xilinx block memory compatible to the
FASM asynchronous ROM cycle used by the SLC1657.

The right side of the figure shows a typical instruction download cycle. After the host
computer downloads an instruction address/data pair, it asserts the [PLCH*] signal. This
causes the write pulse state machine (located in the SEMRMINT entity) to generate a sin-
gle, synchronous write pulse. Although the state machine is synchronous with [MCLK],
the internal timing insures that the write pulse will be valid during the rising edge on the
Xilinx block memory. Furthermore, the state machine allows only one write pulse
(lasting for one clock cycle) to be generated, regardless of the duration of the external
[PLCH*] signal. The state diagram for the write pulse is shown in Figure 6-7.

PCLK* 0

PDAT*

PLCH*

PROG*

D11 D10 D00 A10 A00

1 11 12 22

Technical Reference Manual 125 SLC1657

Figure 6-6. Xilinx block RAM cycles.

N_MCLK

DIN()

DOUT()

ADR()

WE

DIN DOUT

WE
ADR

XILINX
BLOCK
RAM

0

MCLK

1 2 3

EN

RST

INSTRUCTION FETCH CYCLES

VALID VALID VALID VALID

0 1 2

EN
RST

12 12
11

INSTRUCTION DOWNLOAD CYCLE

VALID

VALID

Tas

Tas

VALID VALID VALIDVALID

Tds

Technical Reference Manual 126 SLC1657

Figure 6-7. State diagram for the write pulse state machine.

6.5.4 XSP2EVAL Entity

Other entities used by this module: SEMRMINT, TOPLOGIC

The XSP2EVAL entity is the highest level entity used in the Xilinx Spartan 2 evaluation
project. A block diagram of the entity is shown in Figure 6-8. The heirarchy diagram is
shown in Figure 6-9.

INPUTS: LCH
STATES: WE, S0

01

TEST

0

11

1

10

00

1

1

0

0

X

EQUATIONS:

S0 := (/TEST * LCH * /WE * S0)
 or (/TEST * LCH * WE * /S0);

WE := (/TEST * LCH * /WE * /S0);

Technical Reference Manual 127 SLC1657

Figure 6-8. Block diagram of the XSP2EVAL entity.

BM
CL
K

TE
ST

'0
'

TE
ST
IN

TM
RC
LK

MC
LK

TO
PL
OG
IC

EA
DR
(6
..
0)

EW
ER
AM

EA
LU
(7
..
0)

GP
(7
..
0)

RO
M(
11
..
0)

EM
CL
K_
16

PR
ES
ET

EP
RC
(1
0.
.0
)

SE
MR
MI
NT

SY
NC
RO
NO
US

RA
M

IN
TE
RF
AC
E

PL
CH
*

PR
OG
*

PC
LK
*

PD
AT
*

BP
CL
K

BP
DA
T

BP
RO
G

BP
LC
H

20
6

20
5

20
4

20
2

77
IB
UF
G

BT
MR
CL
K

BM
CL
K

3

PO
RT
0(
0)

82

PO
RT
0(
1)

81

PO
RT
0(
2)

75

PO
RT
0(
3)

74

PT
ST
B0

12
2

BP
TS
TB
0

PO
RT
0(
4)

71

PO
RT
0(
5)

70

PO
RT
0(
6)

69

PO
RT
0(
7)

68

PO
RT
1(
0)

86

PO
RT
1(
1)

87

PO
RT
1(
2)

88

PO
RT
1(
3)

89

12
3

PO
RT
1(
4)

90

PT
IN
1(
4)

PT
OU
T1
(4
)

PC
OU
T1
(4
)

PO
RT
1(
5)

19
5

PT
IN
1(
5)

PT
OU
T1
(5
)

PC
OU
T1
(5
)

PO
RT
1(
6)

19
4

PT
IN
1(
6)

PT
OU
T1
(6
)

PC
OU
T1
(6
)

PO
RT
1(
7)

19
3

PT
IN
1(
7)

PT
OU
T1
(7
)

PC
OU
T1
(7
)

PO
RT
2(
0)

18
1

PT
IN
2(
0)

PT
OU
T2
(0
)

PC
OU
T2
(0
)

PO
RT
2(
1)

18
0

PT
IN
2(
1)

PT
OU
T2
(1
)

PC
OU
T2
(1
)

PO
RT
2(
2)

17
9

PT
IN
2(
2)

PT
OU
T2
(2
)

PC
OU
T2
(2
)

PO
RT
2(
3)

17
6

PT
IN
2(
3)

PT
OU
T2
(3
)

PC
OU
T2
(3
)

PT
ST
B2

12
7

BP
TS
TB
2

PO
RT
2(
4)

17
5

PT
IN
2(
4)

PT
OU
T2
(4
)

PC
OU
T2
(4
)

PO
RT
2(
5)

17
4

PT
IN
2(
5)

PT
OU
T2
(5
)

PC
OU
T2
(5
)

PO
RT
2(
6)

17
3

PT
IN
2(
6)

PT
OU
T2
(6
)

PC
OU
T2
(6
)

PO
RT
2(
7)

17
2

PT
IN
2(
7)

PT
OU
T2
(7
)

PC
OU
T2
(7
)

BP
TS
TB
1

PT
ST
B1

PT
IN
1(
0)

PT
OU
T1
(0
)

PC
OU
T1
(0
)

PT
IN
1(
1)

PT
OU
T1
(1
)

PC
OU
T1
(1
)

PT
IN
1(
2)

PT
OU
T1
(2
)

PC
OU
T1
(2
)

PT
IN
1(
3)

PT
OU
T1
(3
)

PC
OU
T1
(3
)

PT
IN
0(
4)

PT
OU
T0
(4
)

PC
OU
T0
(4
)

PT
IN
0(
5)

PT
OU
T0
(5
)

PC
OU
T0
(5
)

PT
IN
0(
6)

PT
OU
T0
(6
)

PC
OU
T0
(6
)

PT
IN
0(
7)

PT
OU
T0
(7
)

PC
OU
T0
(7
)

PT
IN
0(
0)

PT
OU
T0
(0
)

PC
OU
T0
(0
)

PT
IN
0(
1)

PT
OU
T0
(1
)

PC
OU
T0
(1
)

PT
IN
0(
2)

PT
OU
T0
(2
)

PC
OU
T0
(2
)

PT
IN
0(
3)

PT
OU
T0
(3
)

PC
OU
T0
(3
)

'0
'

RE
GI
SR
AM

12
8
X
8-
BI
T

RE
SE
T

BR
ES
ET

12
1

BM
CL
K

SL
EE
P

13
3

BS
LE
EP

NO
TE
:
UN
LE
SS
 O
TH
ER
WI
SE
 I
ND
IC
AT
ED

IN
PU
T
BU
FF
ER
S
AR
E
TY
PE
 '
IB
UF
',
 O
UT
PU
T

BU
FF
ER
S
AR
E
TY
PE
 '
OB
UF
'
AN
D
AN
D

TH
RE
E-
ST
AT
E
OU
TP
UT
 B
UF
FE
RS
 A
RE
 '
IO
BU
F'
.

IN
ST
RR
OM

2,
04
8
X

12
-B
IT

BM
CL
K

RDIN(11..0)

RADR(10..0)

RWE

BM
CL
K

XS
P2
EV
AL

EM
UL
AT
IO
N
RO
M

DO
WN
LO
AD
 C
AB
LE

IN
TE
RF
AC
E

IN
ST
RU
CT
IO
N
RO
M
FO
RM
ED
 F
RO
M
XI
LI
NX

SP
AR
TA
N
II
 B
LO
CK
 S
EL
EC
T
RA
M
US
IN
G

XI
LI
NX
 '
CO
RE
 G
EN
ER
AT
OR
'
UT
IL
IT
Y.
 T
HE

IN
IT
IA
L
CO
NT
EN
TS
 A
RE
 F
OR
ME
D

WI
TH
 T
HE
 S
IL
IC
OR
E
'R
OM
DA
TA
'

UT
IL
IT
Y
SO
FT
WA
RE
.

RE
GI
ST
ER
 R
AM
 F
OR
ME
D
FR
OM
 X
IL
IN
X

SP
AR
TA
N
II
 D
IS
TR
IB
UT
ED
 R
AM
 U
SI
NG

XI
LI
NX
 '
CO
RE
 G
EN
ER
AT
OR
'
UT
IL
IT
Y.

ON
LY
 7
2
OF
 1
28
 B
YT
ES
 A
RE
 U
SE
D.

Technical Reference Manual 128 SLC1657

Figure 6-9. Hierarchy diagram for the XSP2EVAL entity.

REG08CPN.VHD

REG12CRN.VHD

RESETGEN.VHD

STATSREG.VHD

TCOPTREG.VHD

TIMRCNTR.VHD

REG08CNN.VHD

WATCHDOG.VHD

TIMRSYNC.VHD

BUC08NNP.VHD

PRESCALE.VHD

INDEXREG.VHD

CLOCKDIV.VHD

INSTRDEC.VHD

MUX08X04.VHD

MUX08X08.VHD

PORTSREG.VHD

PROGCNTR.VHD

ALULOGIC.VHD

TOPLOGIC.VHD

BUC11CPP.VHD

REG11CNN.VHD

MUX11X04.VHD

BINADDER.VHD

XSP2EVAL.VHD

SEMRMINT.VHD

LPFILTER.VHD

MUX11X02.VHD

IBUF

IBUFG

INSTRROM

IOBUF

OBUF

REGISRAM

NOTES:

(*) SUPPLIED BY XILINX
 ALLIANCE SOFTWARE

(**) CREATED BY XILINX
 CORE GENERATOR.

(**)

(**)

(*)

(*)

(*)

(*)

Technical Reference Manual 129 SLC1657

7.0 Implementation on the Altera FLEX 10KE FPGA

This chapter describes the steps needed to integrate the SLC1657 onto a Altera FLEX
10KE FPGA. An exercise is presented whereby a four function calculator is imple-
mented on an evaluation board.

The purpose of this chapter is to:

• Learn about the SLC1657 Evaluation Kit for the Altera FLEX 10KE FPGA.
• Learn the steps needed to integrate a simple system-on-chip.
• Demonstrate how to simulate the TOPLOGIC entity.
• Demonstrate how to synthesize an IP core.
• Create the register RAM and instruction ROM.
• Create a parallel port interface for download and test of application code.
• Integrate the TOPLOGIC core with RAM, ROM and parallel port interface.
• Download and run a ‘C’ application program for a 10-key calculator.
• Create a fixed PROM.

The following hardware and software tools are used in the exercises:

• PeakVHDL simulation and synthesis tools from Protel International.
• Altera MAX+PLUS II Place & Route Software.
• SLC1657 evaluation kit for Altera FLEX 10KE FPGA.
• CC5X ‘C’ compiler from B Knudsen Data.
• DOWNLOAD software for testing application code.
• MAKEXCOE software for integration of a ROMable application software.
• PROM programmer27.

27 The Data I/O Plus 48 PROM programmer was used for this exercise.

Technical Reference Manual 130 SLC1657

7.1 Evaluation Kit for Altera FLEX 10KE FPGA

The evaluation kit for Altera FLEX 10KE FPGA allows the user to evaluate and test the
SLC1657 microcontroller. The kit includes:

• Evaluation board with Altera FLEX EPF10K50E FPGA (see Figure 7-1).
• PROMs for demonstration and calculator functions.
• 16 x 1 LCD display.
• 20-key keypad.
• 5-MHz crystal oscillator.
• 1 KHz RC oscillator.
• 9V battery pack.
• Demonstration program.
• Calculator program.
• PC parallel port download cable and software.
• Technical reference manual.

The evaluation board comes with two embedded software programs. These are ‘ADMO’,
a generic demonstration PROM and ‘ACLC’, a calculator program. Each resides on a
PROM, which contains both the hardware for the SLC1657 microcontroller and the soft-
ware application programs.

7.1.1 ADMO Software

The ADMO embedded ROM program demonstrates how the SLC1657 can be completely
integrated into an FPGA. This includes RAM, ROM and I/O elements. The ADMO em-
bedded ROM demonstration displays the features of the core, and also has a ‘stopwatch’
function. Follow these simple instructions to operate ADMO:

1) Remove the evaluation board from the anti-static bag28.

2) Verify that the 8-pin ROM labeled ‘ADMO’ is located in DIP socket U5 (to the

right of the LCD display). There is a ‘spare’ PROM socket located at U2 (at the
top of the board). This socket is not active, and only serves as a holder for the
unused PROM. You might need to switch the PROMs around.

3) Connect the +9 VDC battery pack to the evaluation board using connector J1.

28 The board should be handled at an approved anti-static workstation.

Technical Reference Manual 131 SLC1657

4) Verify that the core boots up, and that display on the evaluation board reads
‘SILICORE SLC1657’. This indicates that the microcontroller inside of the
FPGA has reset and is running the application code.

5) Push switch ‘S17’ (the switch marked ‘0’).

6) The features of the core scroll by on the display.

7) Push switch ‘S18’ (the switch marked ‘.’).

8) Verify that a counter display “00:00 0/10th” appears. Pushing switch S18 (‘.’)

always starts the ‘stopwatch’ application. Pushing switch S19 (‘+/-’) starts the
stopwatch, and pushing ‘S20’ (‘=’) stops it. The stopwatch can be cleared by
pushing ‘S18’ (‘.’) again. The following table summarizes the switches used by
ADMO:

Table 7-1. ADMO Key Functions

Switch Label Action
S17 ‘0’ Marquee of features
S18 ‘.’ Initiate/clear stopwatch
S19 ‘+/-‘ Start stopwatch
S20 ‘=’ Stop stopwatch

7.1.2 ACLC Software

The ACLC calculator software places the evaluation board into its calculator mode. In-
stall the ACLC PROM into U5 and operate the evaluation board as a four function calcu-
lator.

Technical Reference Manual 132 SLC1657

Figure 7-1. Evaluation board for Altera FLEX 10KE FPGA.

Technical Reference Manual 133 SLC1657

7.2 The AF10EVAL Exercise

An exercise is given below to better understand the operation of the SLC1657. This cre-
ates a system-on-chip called ‘AF10EVAL’, which stands for Altera FLEX 10KE
EVALuation system. It’s a system-on-chip (SoC) that we’ll use to design and run a four
function calculator.

The AF10EVAL system uses several VHDL entities. These are described in detail in
section 7.5 (below). The user is encouraged to study the descriptions there, along with
the VHDL source code. These entities include:

• AF10EVAL: Altera FLEX 10KE Evaluation (top level VHDL entity)
• TOPLOGIC: TOP LOGIC design for the SLC1657.
• REGISRAM: REGISter RAM.
• INSTRROM: INSTRuction ROM.
• AEMRMINT: Altera Emulation ROM Interface.

7.2.1 STEP 1 – Simulate the TOPLOGIC Entity

The first step to creating the SLC1657 is to simulate the TOPLOGIC entity. This famil-
iarizes the user with the simulation tools, the SLC1657 IP core and the general operation
of all components. This step is identical for all target devices such as Agere, Altera and
Xilinx.

Using the Protel PeakVHDL simulation tool, perform the following operations:

1) Create a new directory called ‘TLTEST’. [One has been created for you in the

EXAMPLES folder if you wish to use it].

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project TLTEST, and put it into the ‘TLTEST’ folder.

3) Add all of the modules in the TOPLOGIC entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the TOPLOGIC entity
in Chapter 5. Each entity can be found in its own unique folder in the
‘VHDL_source’ directory.

When simulating with the PeakVHDL product, be sure that the highest level mod-
ule in the hierarchy is the TOPLOGIC test bench (TSTBENCH.VHD from the
TOPLOGIC folder).

Technical Reference Manual 134 SLC1657

Also, the TOPLOGIC test bench simulation will need the corresponding test vector
files. These are the files with the ‘*.txt’ extension in the TOPLOGIC folder, and
should be copied into the TLTEST directory.

When finished, the project window should look something like that shown in Figure
7-2.

4) Simulate the design using the manufacturers directions. At this point the TOP-
LOGIC entity should simulate with no errors.

Figure 7-2. PeakVHDL project window.

7.2.2 STEP 2 – Create REGISRAM (Register RAM)

The register RAM is a 128 x 8-bit synchronous memory. It must conform to the FASM
SYNCHRONOUS RAM guidelines described elsewhere in this manual. There are many
ways to build memories, but the simplest is to use the automatic memory generation soft-
ware that is supplied with most FPGA place & route tools.

Technical Reference Manual 135 SLC1657

Altera supplies such a tool with their MAX+PLUS II software. It’s called the MegaWiz-
ard Plug-in Manager, and is capable of creating the exact memory that’s needed.

In this example the register RAM will be formed from ‘EAB’s, or Embedded Array
Blocks. Using the Altera MegaWizard Plug-in Manager tool, create the REGISRAM en-
tity:

1) Create a directory called ‘REGISRAM’. [One has been created for you in the

ALTERA EXAMPLES folder].

2) Open the Altera MegaWizard Plug-in Manager tool, and set it up to create a syn-

chronous RAM in the REGISRAM folder. Set up the options thusly:

Output file format: VHDL
Project file: create a project file named ‘regisram’ in the REGISRAM directory.
Megafunction type: STORAGE: LPM_RAM_DP
Data bus width: 8-bit
Address bus width: 7-bit
Clocking method: single clock
Registered port(s): write input (only)
Memory initialization: none (unchecked)
Implementation: with EAB’s (i.e. box unchecked)

3) Generate REGISRAM.

4) Verify that the REGISRAM folder that you created has a file named ‘REGIS-

RAM.vhd’ in it. This is a VHDL description for the RAM (that we’ll use later).

 If you inspect the REGISRAM.VHD file that was created you will note that there

are separate read and write address buses. This is what Altera calls a ‘dual port’
memory. However, these two address buses will be combined by the AF10EVAL
entity. This will create a FASM compatible REGISRAM.

7.2.3 STEP 3 – Create INSTRROM (Instruction ROM)

In the Altera FLEX 10KE, the instruction ROM is formed from asynchronous Embedded
Array Blocks (EABs). It must conform to the FASM ASYNCHRONOUS ROM guide-
lines described elsewhere in this manual. This will be configured by the Altera
MegaWizard Plug-in Manager tool (used above) to form a 2,048 x 12-bit instruction
memory.

Although the term ‘instruction ROM’ is used here, this memory is actually a read/write
memory. That’s because the example will create a downloadable memory interface.
This allows application software to be downloaded into the instruction ROM. This is ac-

Technical Reference Manual 136 SLC1657

complished with a parallel port interface called AEMRMINT, and is very useful for
software development purposes.

For now, we’ll rely on the download capability to get new application code into the mi-
crocontroller. However, later we’ll initialize the INSTRROM entity with our application
code. Using the Altera MegaWizard Plug-in Manager tool, create the INSTRROM en-
tity:

1) Create a directory called ‘INSTRROM’. [One has been created for you in the

Altera examples folder if you wish to use that].

2) Open the Altera MegaWizard Plug-in Manager tool, and set it up to create an

asynchronous RAM in the INSTRROM folder. Set up the options thusly:

File format: VHDL
Megafunction type: LPM_RAM_DQ
Data bus width: 12-bit
Address bus width: 11-bit
Registered port: non checked (this is an asynchronous FASM memory)
Memory initialization: none (unchecked)
Implementation: with EAB’s

3) Generate INSTRROM.

4) Verify that the REGISRAM folder that you created has a file named ‘IN-

STROM.VHD’ in it. This is a VHDL description for the ROM (that we’ll use
later).

7.2.4 STEP 4 – Synthesis

The highest level entity/architecture pair in this system is the VHDL source file named
‘AF10EVAL’. This file ties all of the parts of the system together as described in the
block and hierarchy diagrams for the AF10EVAL entity below.

Using the Protel PeakVHDL synthesis tool, perform the following operations:

1) Create a new directory called ‘AF10EVAL’.

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project AF10EVAL, and put it into the ‘AF10EVAL’ folder.
[This is already done for you in the Altera examples folder if you wish to use that.]

3) Add all of the modules in the AF10EVAL entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the AF10EVAL entity

Technical Reference Manual 137 SLC1657

later in this chapter. The entities relating to TOPLOGIC (e.g. ALULOGIC.VHD)
can be found in its own unique folder in the ‘VHDL_source’ directory. The entities
relating to Altera FLEX 10KE implementation (e.g. AEMRMINT.VHD) can be
found in ‘Altera’ directory.

4) Move the following files into the AF10EVAL directory: ‘REGISRAM.vhd’ and

‘INSTRROM.vhd’. These were created earlier, and are contained in the REGIS-
RAM and INSTRROM directories (respectively). The Altera Max+Plus II place &
route software will refer back to these files when routing the design. It will expect
them to be in the ‘AF10EVAL’ directory.

5) Select ‘FLEX 10KE Series (EDIF)’ in the PeakVHDL synthesis options.

6) Synthesize the AF10EVAL system with PeakVHDL.

7) Look in the synthesis log file, and verify that no errors were generated by

PeakVHDL.

8) Verify that file ‘AF10EVAL.EDN’ is present in the directory. This is the EDIF file

created by PeakVHDL.

7.2.5 STEP 5 – Place & Route the Design

The EDIF file created in STEP 4 contains all of the microcontroller logic. The next step
is to place and route the design on the Altera FLEX 10KE FPGA chip. In this example,
we’ll use the Altera Max+Plus II software to place and route the design.

Using the Altera Max+Plus II software tool, perform the following operations:

1) Start the Max+Plus II design manager.

2) Create a new project. Under FILE|PROJECT|NAME select ‘AF10EVAL.edn’ as

the input file. This was the EDIF file that was created in STEP 4, and is the input
file for the Max+Plus II place and route software. [This has already been done for
you in the Altera EXAMPLES folder].

3) Under ASSIGN|DEVICE, verify (or enter) the part number of the FLEX 10KE

FPGA.

4) Under ASSIGN|PIN LOCATION assign the pin locations on the FPGA chip.

These are identical to those shown in Figure 7-8, and on the schematic diagram for
the evaluation board.

Technical Reference Manual 138 SLC1657

5) Under ASSIGN|TIMING REQUIREMENTS generate a timing constraint for signal
[MCLK] of 5.000 MHz.

6) Under ASSIGN|GLOBAL PROJECT DEVICE OPTIONS select the following:

 - EPC1PC8 PROM device
 - Check ‘ENABLE INIT_DONE’
 - Check ‘MULTIVOLT I/O’
 - Check ‘USE LOW VOLTAGE CONFIGURATION DEVICE’

7) Place and route the design by selecting MAXPLUSII|COMPILER. After compil-

ing, look in the ‘AF10EVAL.rpt’ file. This file reports the specific details of the
place and route process, pin locations and so forth. Verify that there were no errors
generated during the run.

7.2.6 STEP 6 – Create the PROM

The final step in implementing the design is to create a PROM (Programmable Read
Only Memory). The PROM contains all of the logic necessary to implement the
SLC1657 microcontroller. The file used to create the PROM is called the
‘AF10EVAL.pof’. Use this file to create a PROM.

7.3 Using the Emulation ROM (Download) Capability

The steps listed in section 7.2 are used to create a complete SLC1657 system on the Al-
tera FLEX 10KE evaluation board. That system was programmed onto a PROM, and
contains the hardware for the microcontroller. The circuit contains an emulation ROM
capability. This allows software instructions to be downloaded into the board over a par-
allel port cable.

In this example, a sample software program is downloaded over the parallel port cable.
To demonstrate its use, a calculator demonstration program called ‘CALCDEMO.C’ is
used. This turns the evaluation board into a four function calculator.

- IMPORTANT –
The Altera EPC1 PROM can be configured for +5 VDC or +3.3 VDC

operation. The PROM is configured for the correct voltage (+3.3
VDC) by the MAX+PLUS II Software. The voltage was selected
above by configuring the software for a ‘LOW VOLTAGE CON-

FIGURATION DEVICE’. Failure to select this option may result in
unreliable operation.

Technical Reference Manual 139 SLC1657

Before downloading, inspect the program called ‘CALCDEMO.C’. As you will see, it
contains standard ‘C’ source code. This program is compiled using the ‘CC5X’ compiler
available from B. Knudsen Data (Trondheim, Norway). The compiler produces a file
called ‘CALCDEMO.HEX’, which is the Intel Hex formatted file. Both the ‘C’ source
file and the compiled file are provided in the EXAMPLES directory.

Software is downloaded with a program called ‘DOWNLOAD.EXE’. This is an execu-
table file for use under the DOS operating system. DOWNLOAD.EXE reads the Intel
Hex formatted file and sends it out the parallel port cable.

Follow these simple instructions to operate the emulation ROM.

1) Remove the evaluation board from the anti-static bag29.

2) Verify that an 8-pin PROM is loaded into the socket located at ‘U5’. All of the

PROMs supplied with the SLC1657 demo board include the emulation ROM
capability. Also, there is a ‘spare’ PROM socket located at U2. This socket is
not active, and only serves as a holder for an unused PROM.

3) Connect the parallel port download cable to the printed circuit board at connec-

tor J2. Connect the other end of the cable to the parallel port connector on a PC
computer. This cable is a standard Centronics compatible parallel port cable.

4) Connect the +9 VDC battery pack to the evaluation board.

5) If you are using the PROM created above, then the display will show eight

‘blanks’ on the left hand side of the display. At this point the microcontroller
has booted up, but its emulation ROM is empty.

6) On the PC computer, get into DOS mode (if running Windows 95/98). Locate

the directory with the program called DOWNLOAD.EXE. Type the following
at the DOS command prompt (using the correct path):

download lpt1 c:\slc1657\Altera\examples\calcdemo\calcdemo.hex

 This causes the object file called ‘calcdemo.hex’ to be downloaded over the par-

allel port cable. Once the download is complete, the core will automatically re-
set and run the program.

 In the command line syntax, ‘lpt1’ refers to the parallel port number. If ‘lpt2’ is

used (or some other port), substitute the port number.

29 The board should be handled at an approved anti-static workstation.

Technical Reference Manual 140 SLC1657

 If you have the ‘CC5X’ compiler, then you can edit ‘calcdemo.c’ and compile
it. The compiler creates the Intel Hex formatted file called ‘calcdemo.hex’,
which can be immediately downloaded to the evaluation board.

7) Verify that the core boots up, and that display on the evaluation board reads ‘0’.

This indicates that the microcontroller inside of the FPGA has reset and is run-
ning the application code.

8) Try the calculator.

7.4 Creating an Embedded PROM

This section describes how to create an embedded ROM. The embedded PROM contains
information for both hardware and software.

The PROM created in the example of section 7.2 (above) causes the SLC1657 to boot up
without any instruction memory. Under that scenario, software is downloaded and tested
over the parallel port cable. However, once the user is satisfied with the code, then it can
be embedded into the PROM. This section describes how to create the same ROM, but
instead with embedded software attached.

For this example, we’ll use the same ‘CALCDEMO.HEX’ file to create the embedded
ROM. However, in this case the ‘CALCDEMO.HEX’ file will be converted to a Altera
‘.MIF’ file. The Altera ‘.MIF’ file is used to initialize the instruction ROM
(INSTRROM).

To create the Altera ‘.MIF’ file, perform the following operations:

1) Move the file ‘calcdemo.hex’ into the directory called ‘MAKEAMIF’.

2) Convert the file by typing: MAKEAMIF CALCDEMO.HEX.

3) The conversion utility will create a file called CALCDEMO.MIF. This file will

be used to initialize the ROM.

- IMPORTANT –
DOWNLOAD.EXE is intended to be operated from a DOS environ-
ment, including the variants under Windows 95 and 98. However, it

will not work with Windows NT. Microsoft has implemented security
walls on Windows NT to prevent access to the parallel port.

Technical Reference Manual 141 SLC1657

When creating the embedded ROM, follow all of the same steps as shown in section 7.2
However, substitute the following directions for those given in STEP 3 (creating
INSTRROM). The modified instructions are:

Using the Altera MegaWizard Plug-in Manager, create the INSTRROM entity:

1) Create a directory called INSTRROM_CALCDEMO. [This step has already

been performed for you in the EXAMPLES directory.

2) Open the Altera MegaWizard Plug-in Manager, and set it up to create an asyn-

chronous RAM in the INSTRROM folder. Configure everything the same as in
section 7.2, except specify the memory initialization file of ‘CALCDEMO.mif’.

3) Generate INSTRROM.

4) Move the ‘INSTROM.vhd’ file into the INSTRROM_CALCDEMO folder.

5) Repeat the rest of the steps for creating the ‘AF10EVAL’ above. For your con-

venience, these steps have already been done for you in the Examples directory
under ‘AF10EVAL_CALCDEMO’.

Technical Reference Manual 142 SLC1657

7.5 VHDL Entity Reference for ALTERA FLEX 10KE

The VHDL entities used in the Altera FLEX 10KE Evaluation project are given below.
These are specific to this implementation. However, the TOPLOGIC entities (given in
Chapter 5) are also used in the example.

7.5.1 LPFILTER Entity

Other entities used by this module: NONE

The LPFILTER entity is a digital low-pass filter. Each of the EMROMINT program-
ming inputs is conditioned by LPFILTER. This prevents noise from the PC-compatible
download cable from entering the core. Figure 7-3 shows how the filter works.

The filter input is synchronized to the filter clock [MCLK_16] by a D type flip-flop. This
prevents metastable and race conditions from occurring within the filter itself. Once the
input is synchronized, it enters the LPFILTER state machine. The state machine is de-
signed so that the input signal must be in its asserted or negated state for at least two
[MCLK_16] cycles. This causes short (high frequency) pulses to be rejected, and long
(low frequency) signals to be accepted.

Figure 7-3 also shows the filter response. Very low frequencies are passed without at-
tenuation. As the speed of the input signal increases to MCLK_16 / 3, the filter begins to
reject the input signal. Signals faster than MCLK_16 are rejected30.

For example, when the SLC1657 clock [MCLK] operates at 5.00 MHz, the filter passes
all frequencies up to about 0.104 MHz. As the input signal increases beyond that point,
the low-pass filter begins rejecting the input. Signals faster than 0.313 MHz are totally
rejected.

30 If the input signal frequency exceeds MCLK_16 x 2, then the output of the filter will start to pass some

signal. However, the noise found on the parallel cable does not exhibit this behavior and is not a prob-
lem.

Technical Reference Manual 143 SLC1657

BLOCK DIAGRAM

TIMING DIAGRAM

0

STATE DIAGRAM

INPUTS: CINPUT
STATES: COUNT, OUTPUT

1

0

01

TEST

1

11

1

1

00

0

CLK

10

0

OUTPUT

CLK

INPUT

SYNCHRONIZER FLIP-FLOP
REQUIRED TO PREVENT
RACE AND METASTABLE

CONDITIONS

D

TEST

INPUT
CINPUT

Q

REJECTEDREJECTED

CLK

FREQUENCY RESPONSE

CLK/3

OUTPUT
RESPONSE

1:1

INPUT
FREQ

LPFILTER
STATE

MACHINE

OUTPUT

ACCEPTED

Figure 7-3. LPFILTER entity operation.

Technical Reference Manual 144 SLC1657

7.5.2 MUX11X02 Entity

Other entities used by this module: NONE

The MUX11X0231 entity multiplexes two, 11-bit buses.

7.5.3 AEMRMINT Entity

Other entities used by this module: LPFILTER, MUX11X02

The AEMRMINT (Altera EMulation RoM INTerface) entity provides an external inter-
face for 2,048 x 12 ROM emulation. It allows programming through four external pins.
The entity also provides signal conditioning for the Altera block memory. The Altera
block memory is assumed to be configured so that it’s compatible with the FASM asyn-
chronous ROM described elsewhere in this manual.

Figure 7-4 shows a block diagram of the AEMRMINT entity. During normal operation
the external [PROG*] input is negated. This negates the internal [PRESET] signal, and
allows the core to run normally. Addresses from the program counter are routed to the
RAM address lines through MUX11X02. The RAM then generates instructions which
appear at its [ADR(10..0)] output.

Instructions can be downloaded to the core by connecting a programming cable to the
programming enable [PROG*], programming clock [PCLK*], programming data
[PDAT*], and programming latch [PLCH*] pins. From a PC-compatible computer this
can be done via a Centronics parallel port cable in conjunction with the download soft-
ware.

Figure 7-5 shows the instruction download timing. The download begins when the
[PROG*] signal is asserted. This has the effect of (a) resetting the microcontroller and
(b) changing the source of the address bus from the programming counter to the
AEMRMINT download circuit.

Once [PROG*] is asserted, the download data is presented to the [PDAT*] input. This is
then clocked into the AEMRMINT shift register using the [PCLK*] pin. Address and
data information is then clocked into the core using the protocol shown in Figure 7-5.

All of the inputs are conditioned by a low pass filter (LPFILTER entity). This prevents
spurious noise (which is common on PC parallel port cables) from corrupting incoming
data.

31 MUXWWXSS specify a class of multiplexors where ‘WW’ is the width of input and output buses and

‘SS’ specifies the number of selectors.

Technical Reference Manual 145 SLC1657

When a complete address and data pair is loaded into the shift register, it is latched into
the programming RAM using the [PLCH*] signal. A state machine conditions the write
pulse and makes it compatible with the FASM asynchronous ROM block memory. The
sequence can be repeated until all or part of the 2,048 x 12 RAM has been loaded. Once
loaded, the [PROG*] input is negated, and the core starts up normally (using the new pro-
gram).

Figure 7-4. AEMRMINT block diagram.

01

MUX11X02

PRESET

DIN(11..0)ADR(10..0) IWE

LPRC(10..0)

PRC(10..0)

TEST

MCLK_16

SHIFT
REGISTER

DIN

LPROG

LPDAT

LPCLK

LPFILTER

LPFILTER

PLCH*

PROG*

VCC

LPFILTER

LPFILTER
PCLK*

PDAT*

VCC

VCC

VCC

WRITE
PULSE
STATE
MACHINE

BMCLK

LC
H

Technical Reference Manual 146 SLC1657

Figure 7-5. AEMRMINT instruction download.

Figure 7-6 shows the memory model that is used by the Altera Block memory. This is a
normal FASM asynchronous ROM, except that a data in (DIN) and write enable (WE)
ports are added (hence the term ‘modified FASM ROM’). These extra functions allow
data to be downloaded through the AEMRMINT entity. Furthermore, Altera allows this
memory to be initialized. This both allows the CPU to boot with initialized data, and al-
low downloading of data through the parallel port interface.

Figure 7-6. Modified FASM ROM.

PCLK* 0

PDAT*

PLCH*

PROG*

D11 D10 D00 A10 A00

1 11 12 22

11
DOUT

ADR

DOUT()

ADR()

VALID

MODIFIED
FASM ROM

DIN

WE

12 12

DIN() VALID

VALID VALID

WE

VALID

ASYNCHRONOUS
READ CYCLE

(NORMAL FASM ROM)

ASYNCHRONOUS
WRITE CYCLE

(MODIFIED FASM ROM)

Technical Reference Manual 147 SLC1657

Figure 7-7 shows the write pulse state machine used by the AEMRMINT entity. This
state machine allows a single write-enable (WE) pulse to be generated, regardless of the
length of the [PLCH*] signal.

Figure 7-7. State diagram for the write pulse state machine.

7.5.4 AF10EVAL Entity

Other entities used by this module: AEMRMINT, TOPLOGIC

The AF10EVAL entity is the highest level entity used in the Altera FLEX 10KE evalua-
tion project. A block diagram of the entity is shown in Figure 7-8. The heirarchy dia-
gram is shown in Figure 7-9.

INPUTS: LCH
STATES: WE, S0

01

TEST

0

11

1

10

00

1

1

0

0

X

EQUATIONS:

S0 := (/TEST * LCH * /WE * S0)
 or (/TEST * LCH * WE * /S0);

WE := (/TEST * LCH * /WE * /S0);

Technical Reference Manual 148 SLC1657

Figure 7-8. Block diagram of the AF10EVAL entity.

BM
CL
K

TE
ST

'0
'

TE
ST
IN

TM
RC
LK

MC
LK

TO
PL
OG
IC

EA
DR
(6
..
0)

EW
ER
AM

EA
LU
(7
..
0)

GP
(7
..
0)

RO
M(
11
..
0)

EM
CL
K_
16

PR
ES
ET

EP
RC
(1
0.
.0
)

AE
MR
MI
NT

SY
NC
RO
NO
US

RA
M

IN
TE
RF
AC
E

PL
CH
*

PR
OG
*

PC
LK
*

PD
AT
*

14
7

14
8

14
9

15
0

79
IB
UF
G8

PO
RT
0(
0)

70

PO
RT
0(
1)

69

PO
RT
0(
2)

68

PO
RT
0(
3)

67

PT
ST
B0

11
9

BP
TS
TB
0

PO
RT
0(
4)

96

PO
RT
0(
5)

95

PO
RT
0(
6)

94

PO
RT
0(
7)

93

PO
RT
1(
0)

85

PO
RT
1(
1)

86

PO
RT
1(
2)

87

PO
RT
1(
3)

88

12
0

PO
RT
1(
4)

89

PT
IN
1(
4)

PT
OU
T1
(4
)

PC
OU
T1
(4
)

PO
RT
1(
5)

19
7

PT
IN
1(
5)

PT
OU
T1
(5
)

PC
OU
T1
(5
)

PO
RT
1(
6)

19
6

PT
IN
1(
6)

PT
OU
T1
(6
)

PC
OU
T1
(6
)

PO
RT
1(
7)

19
5

PT
IN
1(
7)

PT
OU
T1
(7
)

PC
OU
T1
(7
)

PO
RT
2(
0)

17
6

PT
IN
2(
0)

PT
OU
T2
(0
)

PC
OU
T2
(0
)

PO
RT
2(
1)

17
5

PT
IN
2(
1)

PT
OU
T2
(1
)

PC
OU
T2
(1
)

PO
RT
2(
2)

17
4

PT
IN
2(
2)

PT
OU
T2
(2
)

PC
OU
T2
(2
)

PO
RT
2(
3)

17
3

PT
IN
2(
3)

PT
OU
T2
(3
)

PC
OU
T2
(3
)

PT
ST
B2

12
1

BP
TS
TB
2

PO
RT
2(
4)

17
2

PT
IN
2(
4)

PT
OU
T2
(4
)

PC
OU
T2
(4
)

PO
RT
2(
5)

16
9

PT
IN
2(
5)

PT
OU
T2
(5
)

PC
OU
T2
(5
)

PO
RT
2(
6)

16
8

PT
IN
2(
6)

PT
OU
T2
(6
)

PC
OU
T2
(6
)

PO
RT
2(
7)

16
7

PT
IN
2(
7)

PT
OU
T2
(7
)

PC
OU
T2
(7
)

BP
TS
TB
1

PT
ST
B1

PT
IN
1(
0)

PT
OU
T1
(0
)

PC
OU
T1
(0
)

PT
IN
1(
1)

PT
OU
T1
(1
)

PC
OU
T1
(1
)

PT
IN
1(
2)

PT
OU
T1
(2
)

PC
OU
T1
(2
)

PT
IN
1(
3)

PT
OU
T1
(3
)

PC
OU
T1
(3
)

PT
IN
0(
4)

PT
OU
T0
(4
)

PC
OU
T0
(4
)

PT
IN
0(
5)

PT
OU
T0
(5
)

PC
OU
T0
(5
)

PT
IN
0(
6)

PT
OU
T0
(6
)

PC
OU
T0
(6
)

PT
IN
0(
7)

PT
OU
T0
(7
)

PC
OU
T0
(7
)

PT
IN
0(
0)

PT
OU
T0
(0
)

PC
OU
T0
(0
)

PT
IN
0(
1)

PT
OU
T0
(1
)

PC
OU
T0
(1
)

PT
IN
0(
2)

PT
OU
T0
(2
)

PC
OU
T0
(2
)

PT
IN
0(
3)

PT
OU
T0
(3
)

PC
OU
T0
(3
)

'0
'

RE
GI
SR
AM

12
8
X
8-
BI
T

RE
SE
T

12
2

SL
EE
P

12
5

IN
ST
RR
OM

2,
04
8
X

12
-B
IT

MC
LK

RDIN(11..0)

RADR(10..0)

RWE AF
10
EV
AL

EM
UL
AT
IO
N
RO
M

DO
WN
LO
AD
 C
AB
LE

IN
TE
RF
AC
E

IN
ST
RU
CT
IO
N
RO
M
FO
RM
ED
 F
RO
M
AL
TE
RA

FL
EX
 1
0K
E
EM
BE
DD
ED
 A
RR
AY
 B
LO
CK
 (
EA
B)

US
IN
G
AL
TE
RA
 '
ME
GA
WI
ZA
RD
 P
LU
G-
IN
'

UT
IL
IT
Y.
 T
HE
 I
NI
TI
AL
 C
ON
TE
NT
S
AR
E

FO
RM
ED
 W
IT
H
TH
E
SI
LI
CO
RE
 '
MA
KE
AM
IF
'

UT
IL
IT
Y
SO
FT
WA
RE
.

RE
GI
ST
ER
 R
AM
 F
OR
ME
D
FR
OM
 A
LT
ER
A

FL
EX
 1
0K
E
RA
M
US
IN
G
AL
TE
RA

'M
EG
AW
IZ
AR
D
PL
UG
-I
N
MA
NA
GE
R'

UT
IL
IT
Y.
 O
NL
Y
72
 O
F
12
8
BY
TE
S
AR
E
US
ED
.

Technical Reference Manual 149 SLC1657

Figure 7-9. Hierarchy diagram for the AF10EVAL entity.

REG08CPN.VHD

REG12CRN.VHD

RESETGEN.VHD

STATSREG.VHD

TCOPTREG.VHD

TIMRCNTR.VHD

REG08CNN.VHD

WATCHDOG.VHD

TIMRSYNC.VHD

BUC08NNP.VHD

PRESCALE.VHD

INDEXREG.VHD

CLOCKDIV.VHD

INSTRDEC.VHD

MUX08X04.VHD

MUX08X08.VHD

PORTSREG.VHD

PROGCNTR.VHD

ALULOGIC.VHD

TOPLOGIC.VHD

BUC11CPP.VHD

REG11CNN.VHD

MUX11X04.VHD

BINADDER.VHD

AF10EVAL.VHD

AEMRMINT.VHD

LPFILTER.VHD

MUX11X02.VHD

INSTRROM

NOTES:

(**) CREATED BY ALTERA
 MEGAWIZARD PLUG-IN
 MANAGER.

(**)REGISRAM

(**)

ALTERA SPECIFIC FILES COMMON SLC1657 FILES

Technical Reference Manual 150 SLC1657

8.0 Implementation on the Agere ORCA 3L FPGA

This chapter describes the steps needed to integrate the SLC1657 onto a Agere32 ORCA
3L FPGA. An exercise is presented whereby a four function calculator is implemented
on an evaluation board.

The purpose of this chapter is to:

• Learn about the SLC1657 Evaluation Kit for the Agere ORCA 3L FPGA.
• Learn the steps needed to integrate a simple system-on-chip.
• Demonstrate how to simulate the TOPLOGIC entity.
• Demonstrate how to synthesize an IP core.
• Create the register RAM and instruction ROM.
• Create a parallel port interface for download and test of application code.
• Integrate the TOPLOGIC core with RAM, ROM and parallel port interface.
• Download and run a ‘C’ application program for a 10-key calculator.
• Create a fixed PROM.

The following hardware and software tools are used in the exercises:

• PeakVHDL simulation and synthesis tools from Protel International.
• Agere Foundary 2000 Place & Route Software.
• SLC1657 evaluation kit for Agere ORCA 3L FPGA.
• CC5X ‘C’ compiler from B Knudsen Data.
• DOWNLOAD software for testing application code.
• MAKEOMEM software for integration of a ROMable application software.
• PROM programmer33.

32 Agere Systems was formerly known as Lucent Technologies’ Microelectronics Group.
33 The Needhams EMP-30 PROM programmer was used for the exercise (www.needhams.com).

Technical Reference Manual 151 SLC1657

8.1 Evaluation Kit for Agere ORCA 3L FPGA

The evaluation kit for Agere ORCA 3L FPGA allows the user to evaluate and test the
SLC1657 microcontroller. The kit includes:

• Evaluation board with Agere ORCA OR3L165B FPGA (see Figure 8-1).
• PROMs for demonstration and calculator functions.
• 16 x 1 LCD display.
• 20-key keypad.
• 5-MHz crystal oscillator.
• 1 KHz RC oscillator.
• 9V battery pack.
• Demonstration program.
• Calculator program.
• PC parallel port download cable and software.
• Technical reference manual.

The evaluation board comes with two embedded software programs. These are ‘ODMO’,
a generic demonstration PROM and ‘OCLC’, a calculator program. Each resides on a
PROM, which contains both the hardware for the SLC1657 microcontroller and the soft-
ware application programs.

8.1.1 ODMO Software

The ODMO embedded ROM program demonstrates how the SLC1657 can be completely
integrated into an FPGA. This includes RAM, ROM and I/O elements. The ODMO em-
bedded ROM demonstration displays the features of the core, and also has a ‘stopwatch’
function. Follow these simple instructions to operate ODMO:

1) Remove the evaluation board from the anti-static bag34.

2) Verify that the 44-pin ROM labeled ‘ODMO’ is located in PLCC socket U5 (to

the right of the LCD display). There is a ‘spare’ PROM socket located at U2 (at
the top of the board). This socket is not active, and only serves as a holder for
the unused PROM. You might need to switch the PROMs around.

 When removing 44-pin PLCC ROMs, be sure to use the extraction tool supplied

with the kit.

3) Connect the +9 VDC battery pack to the evaluation board using connector J1.

34 The board should be handled at an approved anti-static workstation.

Technical Reference Manual 152 SLC1657

4) Verify that the core boots up, and that display on the evaluation board reads

‘SILICORE SLC1657’. This indicates that the microcontroller inside of the
FPGA has reset and is running the application code.

5) Push switch ‘S17’ (the switch marked ‘0’).

6) The features of the core scroll by on the display.

7) Push switch ‘S18’ (the switch marked ‘.’).

8) Verify that a counter display “00:00 0/10th” appears. Pushing switch S18 (‘.’)

always starts the ‘stopwatch’ application. Pushing switch S19 (‘+/-’) starts the
stopwatch, and pushing ‘S20’ (‘=’) stops it. The stopwatch can be cleared by
pushing ‘S18’ (‘.’) again. The following table summarizes the switches used by
ODMO:

Table 8-1. ODMO Key Functions

Switch Label Action
S17 ‘0’ Marquee of features
S18 ‘.’ Initiate/clear stopwatch
S19 ‘+/-‘ Start stopwatch
S20 ‘=’ Stop stopwatch

8.1.2 OCLC Software

The OCLC calculator software places the evaluation board into its calculator mode. In-
stall the OCLC PROM into U5 and operate the evaluation board as a four function calcu-
lator.

Technical Reference Manual 153 SLC1657

Figure 8-1. Evaluation board for Agere ORCA 3L FPGA.

Technical Reference Manual 154 SLC1657

8.2 The AGO3EVAL Exercise

An exercise is given below to better understand the operation of the SLC1657. This cre-
ates a system-on-chip called ‘AGO3EVAL’, which stands for Agere ORCA 3L EVALua-
tion system. It’s a system-on-chip (SoC) that we’ll use to design and run a four function
calculator.

The AGO3EVAL system uses several VHDL entities. These are described in detail in
section 8.5 (below). The user is encouraged to study the descriptions there, along with
the VHDL source code. These entities include:

• AGO3EVAL: Agere ORCA 3L Evaluation (top level VHDL entity)
• TOPLOGIC: TOP LOGIC design for the SLC1657.
• REGISRAM: REGISter RAM.
• ROMSEG00-07: INSTRuction ROMs.
• OEMRMINT: ORCA Emulation ROM Interface.

8.2.1 STEP 1 – Simulate the TOPLOGIC Entity

The first step to creating the SLC1657 is to simulate the TOPLOGIC entity. This famil-
iarizes the user with the simulation tools, the SLC1657 IP core and the general operation
of all components. This step is the same for all target devices such as Agere, Altera and
Xilinx.

Using the Protel PeakVHDL simulation tool, perform the following operations:

1) Create a new directory called ‘TLTEST’. [One has been created for you in the

EXAMPLES folder if you wish to use it].

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project TLTEST, and put it into the ‘TLTEST’ folder.

3) Add all of the modules in the TOPLOGIC entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the TOPLOGIC entity
in Chapter 5. Each entity can be found in its own unique folder in the
‘VHDL_source’ directory.

When simulating with the PeakVHDL product, be sure that the highest level mod-
ule in the hierarchy is the TOPLOGIC test bench (TSTBENCH.VHD from the
TOPLOGIC folder).

Technical Reference Manual 155 SLC1657

Also, the TOPLOGIC test bench simulation will need the corresponding test vector
files. These are the files with the ‘*.txt’ extension in the TOPLOGIC folder, and
should be copied into the TLTEST directory.

When finished, the project window should look something like that shown in Figure
8-2.

4) Simulate the design using the manufacturers directions. At this point the TOP-
LOGIC entity should simulate with no errors.

Figure 8-2. PeakVHDL project window.

8.2.2 STEP 2 – Create REGISRAM (Register RAM)

The register RAM is a 128 x 8-bit synchronous memory. It must conform to the FASM
SYNCHRONOUS RAM guidelines described elsewhere in this manual. There are many
ways to build memories, but the simplest is to use the automatic memory generation soft-
ware that is supplied with most FPGA place & route tools.

Technical Reference Manual 156 SLC1657

Agere supplies such a tool with their ORCA Foundry 2000 software. It’s called
SCUBA35, and is capable of creating the exact memory that’s needed. Perform the fol-
lowing instructions to create the REGISRAM entity:

1) Create a directory called ‘REGISRAM’. [One has already been created for you in

the AGERE | EXAMPLES folder].

2) Open the Agere SCUBA tool, and set it up to create a synchronous RAM in the

REGISRAM folder. Set up the options thusly:

Architecture: OR3c/t00
Module type: synchronous single port RAM
Netlist formats: Check EDIF and VHDL
Module name: REGISRAM
Output directory: Enter the path to the REGISRAM output directory.
Netlist destination: Synopsis (Compiler)
Bus expression style: BusA<0>
Bus ordering: BIG ENDIAN
Insert I/O buffers into the netlist: leave unchecked
RAM size: 128 x 8-bit
Clock polarity: INVERTED
Memory file: leave blank (this will be filled in later to create embedded ROMs).
Other: use SCUBA defaults

3) Generate REGISRAM.

4) Verify that the REGISRAM folder now contains several files, including ‘REGIS-

RAM.VHD’ and ‘REGISRAM.EDN’. These are VHDL descriptions and EDIF
files respectively.

8.2.3 STEP 3 – Create ROMSEG00-0F (Instruction ROM)

In the Agere ORCA 3L FPGA, the instruction ROM is formed from sixteen 128 x 12-bit
synchronous RAM elements. These eight elements are combined to form a single 2,048
x 12-bit instruction memory.

Multiple ROM elements are used because the ORCA 3L device supports distributed
memories, but not block memories. In distributed memory, combinational logic look-up
table (LUT) memory is reconfigured as static RAM. However, large distributed memo-
ries can be difficult for the Agere router to handle. By experimentation it has been found
that if the memory is split up into multiple chunks, then it will be much easier to handle

35 SCUBA: Synthesis Compiler for User programmaBle Arrays

Technical Reference Manual 157 SLC1657

by the router. Through experimentation, it has been found that the 2,048 word x 12-bit
memory (on the OR3L165 device) is best handled with sixteen memory segments.

These eight memory segments are called ROMSEG00, ROMSEG01 and so forth. They
are connected together with multiplexors in the AGO3EVAL entity described below.

Although the term ‘instruction ROM’ is used here, this memory is actually a read/write
memory. That’s because a downloadable memory interface is used in the example. This
allows application software to be downloaded into the instruction ROM. This is accom-
plished with a parallel port interface called OEMRMINT, and is very useful for software
development purposes.

For now, we’ll rely on the download capability to get new application code into the mi-
crocontroller. However, later we’ll initialize the ROM with application code.

Using SCUBA, create the sixteen ROMSEG00-0F entities:

1) Create a directory called ROMSEG. [This directory has been created for you in

the AGERE | EXAMPLES folder if you wish to use them].

2) Start SCUBA, and set it up to create a synchronous, single port RAM. Repeat

this step for each ROM segment. For ROMSEG00, set up the options thusly:

Architecture: OR3c/t00
Module type: synchronous single port RAM
Netlist formats: Check EDIF and VHDL
Module name: ROMSEG00
Output directory: Enter the path to the ROMSEG output directory.
Netlist destination: Synopsis (Compiler)
Bus expression style: BusA<0>
Bus ordering: BIG ENDIAN
Insert I/O buffers into the netlist: leave unchecked
RAM size: 128 x 12-bit
Clock polarity: INVERTED
Memory file: leave blank (this will be filled in later to create embedded ROMs).
Other: use SCUBA defaults

Repeat for each of the sixteen ROM segments. Be sure to name each ROM seg-
ment by its own name (e.g. ROMSEG00, ROMSEG01, etc). When finished, the
ROMSEG directory should contain the sixteen segments.

8.2.4 STEP 4 – Synthesis

Technical Reference Manual 158 SLC1657

The highest level entity/architecture pair in this system is the VHDL source file named
‘AGO3EVAL’. This file ties all of the parts of the system together as described in the
block and hierarchy diagrams for the AGO3EVAL entity below.

Using the Protel PeakVHDL synthesis tool, perform the following operations:

1) Create a new directory called ‘AGO3EVAL’. [This directory has been created for

you in the AGERE | EXAMPLES folder if you wish to use it].

2) Open PeakVHDL and create a new project (following the manufacturers direc-

tions). Name the project AGO3EVAL, and put it into the ‘AGO3EVAL’ folder.
[This is already done for you in the AGERE | EXAMPLES folder if you wish to use
that.]

3) Add all of the modules in the AGO3EVAL entity into the project. Be sure to pre-

serve the entity hierarchy. The hierarchy is described with the AGO3EVAL entity
later in this chapter. The entities relating to TOPLOGIC (e.g. ALULOGIC.VHD)
can be found in its own unique folder in the ‘VHDL_source’ directory. The entities
relating to Agere ORCA 3L implementation (e.g. OEMRMINT.VHD) can be found
in ‘AGERE’ directory.

4) Select ‘ORCA 3L Series (EDIF)’ in the PeakVHDL synthesis options. Also note

that ‘Agere’ devices may be listed under the name ‘Lucent’.

5) Synthesize the AGO3EVAL system with PeakVHDL.

6) Look in the synthesis log file, and verify that there were no errors generated by

PeakVHDL.

7) Verify that file ‘AGO3EVAL.EDN’ is present in the directory. This is the EDIF

file created by PeakVHDL.

8.2.5 STEP 5 – Place & Route the Design

The EDIF file created in STEP 4 contains all of the microcontroller logic. The next step
is to place and route the design on the Agere ORCA 3L FPGA chip. In this example,
we’ll use the ORCA Foundry 2000 software to place and route the design.

Using the ORCA Foundry 2000 software tool, perform the following operations:

1) Start the ORCA Foundry 2000 Control Center.

2) Create a new project. Use the Control Center wizard to create the project, or under

FILE | PROJECT | NAME add the following EDIF files for input:

Technical Reference Manual 159 SLC1657

AGO3EVAL.EDN
REGISRAM.EDN
ROMSEG00.EDN
ROMSEG01.EDN
ROMSEG02.EDN
ROMSEG03.EDN
ROMSEG04.EDN
ROMSEG05.EDN
ROMSEG06.EDN
ROMSEG07.EDN
ROMSEG08.EDN
ROMSEG09.EDN
ROMSEG0A.EDN
ROMSEG0B.EDN
ROMSEG0C.EDN
ROMSEG0D.EDN
ROMSEG0E.EDN
ROMSEG0F.EDN

These are the EDIF files that were created in previous steps, and are the input files
to the ORCA Foundry 2000 place and route software. [This has already been done
for you in the AGERE | EXAMPLES folder].

3) Under ASSIGN|DEVICE, verify (or enter) the part number of the ORCA 3L

FPGA.

4) Assign the pin numbers and maximum frequency of the device. Under ASSIGN |

PIN LOCATION assign the pin locations on the FPGA chip. These are identical to
those shown in Figure 8-8, and on the schematic diagram for the evaluation board.
The easiest way to add these is by adding the preference file called ‘TIMING.PRF’
to the project. This file is in the AGERE | EXAMPLES foler, and pre-assigns the
pinout to match the ORCA 3L evaluation board. Furthermore, this file has timing
specifications to specify an MCLK frequency of 5 MHz.

5) Place and route the design by selecting all of the buttons on the ORCA FOUNDRY

2000 STATUS screen. After compiling, look in the ‘AGO3EVAL.rpt’ file. This
file reports the specific details of the place and route process, pin locations and so
forth. Verify that there were no errors generated during the run.

8.2.6 STEP 6 – Create the PROM

The final step in implementing the design is to create a PROM (Programmable Read
Only Memory). The PROM contains all of the logic necessary to implement the

Technical Reference Manual 160 SLC1657

SLC1657 microcontroller. In the ORCA Foundry 2000 Control Center, create a PROM
file by selecting TOOLS | PROM GENERATOR. This generates the file that you will
use to create the PROM.

8.3 Using the Emulation ROM (Download) Capability

The steps listed in section 8.2 are used to create a complete SLC1657 system on the
Agere ORCA 3L evaluation board. That system was programmed onto a PROM, and
contains the hardware for the microcontroller. The circuit contains an emulation ROM
capability. This allows software instructions to be downloaded into the board over a par-
allel port cable.

In this example, a sample software program is downloaded over the parallel port cable.
To demonstrate its use, a calculator demonstration program called ‘CALCDEMO.C’ is
used. This turns the evaluation board into a four function calculator.

Before downloading, inspect the program called ‘CALCDEMO.C’. As you will see, it
contains standard ‘C’ source code. This program is compiled using the ‘CC5X’ compiler
available from B. Knudsen Data (Trondheim, Norway). The compiler produces a file
called ‘CALCDEMO.HEX’, which is the Intel Hex formatted file. Both the ‘C’ source
file and the compiled file are provided in the EXAMPLES directory.

Software is downloaded with a program called ‘DOWNLOAD.EXE’. This is an execu-
table file for use under the DOS operating system. DOWNLOAD.EXE reads the Intel
Hex formatted file and sends it out the parallel port cable.

Follow these simple instructions to operate the emulation ROM.

1) Remove the evaluation board from the anti-static bag36.

2) Verify that an 8-pin PROM is loaded into the socket located at ‘U5’. All of the

PROMs supplied with the SLC1657 demo board include the emulation ROM

36 The board should be handled at an approved anti-static workstation.

- IMPORTANT –
The ORCA 3L evaluation board uses a Xilinx 1702LPC PROM for

configuration. It can be configured for active low or active high reset.
The default on most PROM programmers is active high. However, the
evaluation board requires that the PROM be configured for an active

low reset. If you fail to do this, then the board will not boot up.

Technical Reference Manual 161 SLC1657

capability. Also, there is a ‘spare’ PROM socket located at U2. This socket is
not active, and only serves as a holder for an unused PROM.

3) Connect the parallel port download cable to the printed circuit board at connec-

tor J2. Connect the other end of the cable to the parallel port connector on a PC
computer. This cable is a standard Centronics compatible parallel port cable.

4) Connect the +9 VDC battery pack to the evaluation board.

5) If you are using the PROM created above, then the display will show eight

‘blanks’ on the left hand side of the display. At this point the microcontroller
has booted up, but its emulation ROM is empty.

6) On the PC computer, get into DOS mode (if running Windows 95/98). Locate

the directory with the program called DOWNLOAD.EXE. Type the following
at the DOS command prompt (using the correct path):

download lpt1 c:\slc1657\Agere\examples\calcdemo\calcdemo.hex

 This causes the object file called ‘calcdemo.hex’ to be downloaded over the par-

allel port cable. Once the download is complete, the core will automatically re-
set and run the program.

 In the command line syntax, ‘lpt1’ refers to the parallel port number. If ‘lpt2’ is

used (or some other port), substitute the port number.

 If you have the ‘CC5X’ compiler, then you can edit ‘calcdemo.c’ and compile

it. The compiler creates the Intel Hex formatted file called ‘calcdemo.hex’,
which can be immediately downloaded to the evaluation board.

7) Verify that the core boots up, and that display on the evaluation board reads ‘0’.

This indicates that the microcontroller inside of the FPGA has reset and is run-
ning the application code.

8) Try the calculator.

- IMPORTANT –
DOWNLOAD.EXE is intended to be operated from a DOS environ-
ment, including the variants under Windows 95 and 98. However, it

will not work with Windows NT. Microsoft has implemented security
walls on Windows NT to prevent access to the parallel port.

Technical Reference Manual 162 SLC1657

8.4 Creating an Embedded ROM

This section describes how to create an embedded ROM. The embedded ROM contains
information for both hardware and software.

The ROM created in the example of section 8.2 (above) causes the SLC1657 to boot up
without any valid instructions in memory. Under that scenario, software is downloaded
and tested over the parallel port cable. However, once the user is satisfied with the code,
then it can be embedded into the ROM. This section describes how to create the same
ROM, but instead with embedded software attached.

For this example, we’ll use the same ‘CALCDEMO.HEX’ file to create the embedded
ROM. However, in this case the ‘CALCDEMO.HEX’ file will be converted to Agere
‘.MEM’ files. The Agere ‘.MEM’ files are used to initialize the instruction ROM
(ROMSEG00-0F).

This example is intended to run on the AGERE ORCA 3L FPGA. That device uses dis-
tributed memory. Unfortunately, it is difficult to route larger (2,048 x 12-bit) memories
on this device. In order to solve this problem, the ROM is split into sixteen memory seg-
ments, with each segment having a 128 x 12-bit memory size.

To create the Agere ‘.MEM’ file, perform the following operations:

1) Move the file ‘calcdemo.hex’ into the directory called ‘MAKEOMEM’ (MAKE

Orca MEM file).

2) Convert the file by typing the following at the command line: “MAKEOMEM

CALCDEMO.HEX 16”. This operation must be done in DOS mode.

3) The conversion utility will create sixteen files called ROMSEG00.MEM, ROM-

SEG01.MEM, etc. These will be used to initialize the ROM files.

When creating the embedded ROM, follow all of the same steps as shown in section 8.2
However, substitute the following directions for those given in STEP 3 (creating ROM-
SEG00/01). The modified instructions are:

Using the Agere SCUBA utility, create the ROMSEG00-0F entities:

1) Create a directory called ROMSEG_CALCDEMO. [This step has already been

performed for you in the EXAMPLES directory.

2) Open the Agere SCUBA tool, and set it up to create synchronous RAM in the

ROMSEG_CALCDEMO folder. Configure everything the same as in section
8.2, except specify the memory initialization file for each ROM segment.

Technical Reference Manual 163 SLC1657

3) Generate ROMSEG00-0F.

4) Move the ROM files into the ROMSEG_CALCDEMO folder.

5) Repeat the rest of the steps for creating the ‘AGO3EVAL’ above. For your con-

venience, these steps have already been done for you in the Examples directory
under ‘ROMSEG_CALCDEMO’.

- WARNING –
The evaluation board uses a 44-pin PLCC package for the PROM.

When removing the PROM use a PLCC extraction tool to remove the
part. For your convenience, one is supplied with the evaluation kit.
Using a screwdriver or other instrument may bend the leads on the

PROM, thereby destroying the part.

Technical Reference Manual 164 SLC1657

8.5 VHDL Entity Reference for AGERE ORCA 3L

The VHDL entities used in the AGERE ORCA 3L Evaluation project are given below.
These are specific to this implementation. However, the TOPLOGIC entities (given in
Chapter 5) are also used in the example.

8.5.1 LPFILTER Entity

Other entities used by this module: NONE

The LPFILTER entity is a digital low-pass filter. Each of the EMROMINT program-
ming inputs is conditioned by LPFILTER. This prevents noise from the PC-compatible
download cable from entering the core. Figure 8-3 shows how the filter works.

The filter input is synchronized to the filter clock [MCLK_16] by a D type flip-flop. This
prevents metastable and race conditions from occurring within the filter itself. Once the
input is synchronized, it enters the LPFILTER state machine. The state machine is de-
signed so that the input signal must be in its asserted or negated state for at least two
[MCLK_16] cycles. This causes short (high frequency) pulses to be rejected, and long
(low frequency) signals to be accepted.

Figure 8-3 also shows the filter response. Very low frequencies are passed without at-
tenuation. As the speed of the input signal increases to MCLK_16 / 3, the filter begins to
reject the input signal. Signals faster than MCLK_16 are rejected37.

For example, when the SLC1657 clock [MCLK] operates at 5.00 MHz, the filter passes
all frequencies up to about 0.104 MHz. As the input signal increases beyond that point,
the low-pass filter begins rejecting the input. Signals faster than 0.313 MHz are totally
rejected.

37 If the input signal frequency exceeds MCLK_16 x 2, then the output of the filter will start to pass some

signal. However, the noise found on the parallel cable does not exhibit this behavior and is not a prob-
lem.

Technical Reference Manual 165 SLC1657

BLOCK DIAGRAM

TIMING DIAGRAM

0

STATE DIAGRAM

INPUTS: CINPUT
STATES: COUNT, OUTPUT

1

0

01

TEST

1

11

1

1

00

0

CLK

10

0

OUTPUT

CLK

INPUT

SYNCHRONIZER FLIP-FLOP
REQUIRED TO PREVENT
RACE AND METASTABLE

CONDITIONS

D

TEST

INPUT
CINPUT

Q

REJECTEDREJECTED

CLK

FREQUENCY RESPONSE

CLK/3

OUTPUT
RESPONSE

1:1

INPUT
FREQ

LPFILTER
STATE

MACHINE

OUTPUT

ACCEPTED

Figure 8-3. LPFILTER entity operation.

Technical Reference Manual 166 SLC1657

8.5.2 MUX11X02 Entity

Other entities used by this module: NONE

The MUX11X0238 entity multiplexes two, 11-bit buses.

8.5.3 OEMRMINT Entity

Other entities used by this module: LPFILTER, MUX11X02

The OEMRMINT (ORCA EMulation RoM INTerface) entity provides an external inter-
face for 2,048 x 12 ROM emulation. It allows programming through four external pins.
The entity also provides signal conditioning for internal memory. The internal memory
is assumed to be configured so that it’s compatible with the FASM asynchronous ROM
described elsewhere in this manual.

Figure 8-4 shows a block diagram of the OEMRMINT entity. During normal operation
the external [PROG*] input is negated. This negates the internal [PRESET] signal, and
allows the core to run normally. Addresses from the program counter are routed to the
RAM address lines through MUX11X02. The RAM then generates instructions which
appear at its [ADR(10..0)] output.

Instructions can be downloaded to the core by connecting a programming cable to the
programming enable [PROG*], programming clock [PCLK*], programming data
[PDAT*], and programming latch [PLCH*] pins. From a PC-compatible computer this
can be done via a Centronics parallel port cable in conjunction with the download soft-
ware.

Figure 8-5 shows the instruction download timing. The download begins when the
[PROG*] signal is asserted. This has the effect of (a) resetting the microcontroller and
(b) changing the source of the address bus from the programming counter to the
OEMRMINT download circuit.

Once [PROG*] is asserted, the download data is presented to the [PDAT*] input. This is
then clocked into the OEMRMINT shift register using the [PCLK*] pin. Address and
data information is then clocked into the core using the protocol shown in Figure 8-5.

All of the inputs are conditioned by a low pass filter (LPFILTER entity). This prevents
spurious noise (which is common on PC parallel port cables) from corrupting incoming
data.

38 MUXWWXSS specify a class of multiplexors where ‘WW’ is the width of input and output buses and

‘SS’ specifies the number of selectors.

Technical Reference Manual 167 SLC1657

When a complete address and data pair is loaded into the shift register, it is latched into
the programming RAM using the [PLCH*] signal. A state machine conditions the write
pulse and makes it compatible with the FASM asynchronous ROM block memory. The
sequence can be repeated until all or part of the 2,048 x 12 RAM has been loaded. Once
loaded, the [PROG*] input is negated, and the core starts up normally (using the new pro-
gram).

Figure 8-4. OEMRMINT block diagram.

01

MUX11X02

PRESET

DIN(11..0)ADR(10..0) IWE

LPRC(10..0)

PRC(10..0)

TEST

MCLK_16

SHIFT
REGISTER

DIN

LPROG

LPDAT

LPCLK

LPFILTER

LPFILTER

PLCH*

PROG*

VCC

LPFILTER

LPFILTER
PCLK*

PDAT*

VCC

VCC

VCC

WRITE
PULSE
STATE
MACHINE

BMCLK

LC
H

Technical Reference Manual 168 SLC1657

Figure 8-5. OEMRMINT instruction download.

Figure 8-6 shows the memory model that is used by the Agere memory. This is a normal
FASM asynchronous ROM, except that a data in (DIN), write enable (WE) and clock
(CLK) ports are added (hence the term ‘modified FASM ROM’). These extra functions
allows data to be downloaded through the OEMRMINT entity. Furthermore, Agere al-
lows this memory to be initialized. This both allows the CPU to boot with initialized
data, and allow downloading of data through the parallel port interface.

Figure 8-6. Modified FASM ROM.

PCLK* 0

PDAT*

PLCH*

PROG*

D11 D10 D00 A10 A00

1 11 12 22

11
DOUT

ADR

DOUT()

ADR()

VALID

MODIFIED
FASM ROM

DIN

WE

12 12

DIN() VALID

VALID VALID

WE
ASYNCHRONOUS
READ CYCLE

(NORMAL FASM ROM)

SYNCHRONOUS
WRITE CYCLE

(MODIFIED FASM ROM)

CLK

CLK

Technical Reference Manual 169 SLC1657

Furthermore, this ROM is asynchronous during READ cycles, and synchronous during
WRITE cycles. Figure 8-7 shows the write pulse state machine used by the OEMRMINT
entity. This state machine allows a single write-enable (WE) pulse to be generated, re-
gardless of the length of the [PLCH*] signal. This logic insures that a single, valid write
pulse is issued when instructions are downloaded.

Figure 8-7. State diagram for the write pulse state machine.

8.5.4 AGO3EVAL Entity

Other entities used by this module: OEMRMINT, TOPLOGIC

The AGO3EVAL entity is the highest level entity used in the Agere ORCA 3L evalua-
tion project. A block diagram of the entity is shown in Figure 8-8. The heirarchy dia-
gram is shown in Figure 8-9.

INPUTS: LCH
STATES: WE, S0

01

TEST

0

11

1

10

00

1

1

0

0

X

EQUATIONS:

S0 := (/TEST * LCH * /WE * S0)
 or (/TEST * LCH * WE * /S0);

WE := (/TEST * LCH * /WE * /S0);

Technical Reference Manual 170 SLC1657

Figure 8-8. Block diagram of the AGO3EVAL entity.

BM
CL
K

TE
ST

'0
'

TE
ST
IN

TM
RC
LK

MC
LK

TO
PL
OG
IC

EA
DR
(6
..
0)

EW
ER
AM

EA
LU
(7
..
0)

GP
(7
..
0)

RO
M(
11
..
0)

EM
CL
K_
16

PR
ES
ET

EP
RC
(1
0.
.0
)

OE
MR
MI
NT

SY
NC
RO
NO
US

RA
M

DO
WN
LO
AD

IN
TE
RF
AC
E

PL
CH
*

PR
OG
*

PC
LK
*

PD
AT
*

BP
CL
K

BP
DA
T

BP
RO
G

BP
LC
H

14
7

14
8

15
0

15
1

80

BT
MR
CL
K

BM
CL
K

9

PO
RT
0(
0)

70

PO
RT
0(
1)

69

PO
RT
0(
2)

68

PO
RT
0(
3)

67

PT
ST
B0

11
8

BP
TS
TB
0

PO
RT
0(
4)

10
2

PO
RT
0(
5)

10
1

PO
RT
0(
6)

10
0

PO
RT
0(
7)

99

PO
RT
1(
0)

86

PO
RT
1(
1)

87

PO
RT
1(
2)

88

PO
RT
1(
3)

90

11
9

PO
RT
1(
4)

91

PT
IN
1(
4)

PT
OU
T1
(4
)

PC
OU
T1
(4
)

PO
RT
1(
5)

19
9

PT
IN
1(
5)

PT
OU
T1
(5
)

PC
OU
T1
(5
)

PO
RT
1(
6)

19
8

PT
IN
1(
6)

PT
OU
T1
(6
)

PC
OU
T1
(6
)

PO
RT
1(
7)

19
7

PT
IN
1(
7)

PT
OU
T1
(7
)

PC
OU
T1
(7
)

PO
RT
2(
0)

18
0

PT
IN
2(
0)

PT
OU
T2
(0
)

PC
OU
T2
(0
)

PO
RT
2(
1)

17
9

PT
IN
2(
1)

PT
OU
T2
(1
)

PC
OU
T2
(1
)

PO
RT
2(
2)

17
5

PT
IN
2(
2)

PT
OU
T2
(2
)

PC
OU
T2
(2
)

PO
RT
2(
3)

17
4

PT
IN
2(
3)

PT
OU
T2
(3
)

PC
OU
T2
(3
)

PT
ST
B2

12
0

BP
TS
TB
2

PO
RT
2(
4)

17
3

PT
IN
2(
4)

PT
OU
T2
(4
)

PC
OU
T2
(4
)

PO
RT
2(
5)

17
1

PT
IN
2(
5)

PT
OU
T2
(5
)

PC
OU
T2
(5
)

PO
RT
2(
6)

17
0

PT
IN
2(
6)

PT
OU
T2
(6
)

PC
OU
T2
(6
)

PO
RT
2(
7)

16
9

PT
IN
2(
7)

PT
OU
T2
(7
)

PC
OU
T2
(7
)

BP
TS
TB
1

PT
ST
B1

PT
IN
1(
0)

PT
OU
T1
(0
)

PC
OU
T1
(0
)

PT
IN
1(
1)

PT
OU
T1
(1
)

PC
OU
T1
(1
)

PT
IN
1(
2)

PT
OU
T1
(2
)

PC
OU
T1
(2
)

PT
IN
1(
3)

PT
OU
T1
(3
)

PC
OU
T1
(3
)

PT
IN
0(
4)

PT
OU
T0
(4
)

PC
OU
T0
(4
)

PT
IN
0(
5)

PT
OU
T0
(5
)

PC
OU
T0
(5
)

PT
IN
0(
6)

PT
OU
T0
(6
)

PC
OU
T0
(6
)

PT
IN
0(
7)

PT
OU
T0
(7
)

PC
OU
T0
(7
)

PT
IN
0(
0)

PT
OU
T0
(0
)

PC
OU
T0
(0
)

PT
IN
0(
1)

PT
OU
T0
(1
)

PC
OU
T0
(1
)

PT
IN
0(
2)

PT
OU
T0
(2
)

PC
OU
T0
(2
)

PT
IN
0(
3)

PT
OU
T0
(3
)

PC
OU
T0
(3
)

'0
'

RE
GI
SR
AM

12
8
X
8-
BI
T

RE
SE
T

BR
ES
ET

12
2

BM
CL
K

SL
EE
P

12
3

BS
LE
EP

NO
TE
:
IN
PU
T
BU
FF
ER
S
AR
E
OF
 T
YP
ES
 '
IB
M'
,

'I
BT
'
AN
D
'I
BT
PD
';
 O
UT
PU
T
BU
FF
ER
S

AR
E
OF
 T
YP
E
'O
B6
'
AN
D
AN
D
TH
RE
E-
ST
AT
E

IN
PU
T/
OU
TP
UT
 B
UF
FE
RS
 A
RE
 O
F
TY
PE
 '
BT
Z6
'.

BM
CL
K

RDIN(11..0)

RADR(10..0)

RWE AG
O3
EV
AL

EM
UL
AT
IO
N
RO
M

DO
WN
LO
AD
 C
AB
LE

IN
TE
RF
AC
E

IN
ST
RU
CT
IO
N
RO
M
FO
RM
ED
 F
RO
M
AG
ER
E

'S
CU
BA
'
UT
IL
IT
Y.
 S
IX
TE
EN
 S
ET
S
OF

12
8
x
12
-B
IT
 D
IS
TR
IB
UT
ED
 R
OM
S
AR
E

IN
TE
GR
AT
ED
 T
OG
ET
HE
R
TO
 F
OR
M
A

2,
04
8
x
12
-B
IT
 R
OM
 E
LE
ME
NT
.

RE
GI
ST
ER
 R
AM
 F
OR
ME
D
FR
OM
 A
GE
RE

OR
CA
 3
 D
IS
TR
IB
UT
ED
 R
AM
 U
SI
NG

AG
ER
E
'S
CU
BA
'
UT
IL
IT
Y.

ON
LY
 7
2
OF
 1
28
 B
YT
ES
 A
RE
 U
SE
D.

1 OF 16 DECODER

RADR(10..7)

DO
_S
EG
0F
()

DO
_S
EG
01
()

RA
DR
(1
0.
.7
)

RO
MS
EG
0F

12
8
x
12
-B
IT

RO
MS
EG
01

12
8
x
12
-B
IT

RO
MS
EG
00

12
8
x
12
-B
IT

. . .

DO
_S
EG
00
()

01F
BM
CL
K

BM
CL
K

BM
CL
K

RD
IN
(1
1.
.0
)

RD
IN
(1
1.
.0
)

RD
IN
(1
1.
.0
)

RA
DR
(6
..
0)

RA
DR
(6
..
0)

RA
DR
(6
..
0)

WE
SE
G_
0F

WE
SE
G_
01

WE
SE
G_
00

16
 R
OM
 S
EG
ME
NT
S

Technical Reference Manual 171 SLC1657

Figure 8-9. Hierarchy diagram for the AGO3EVAL entity.

REG08CPN.VHD

REG12CRN.VHD

RESETGEN.VHD

STATSREG.VHD

TCOPTREG.VHD

TIMRCNTR.VHD

REG08CNN.VHD

WATCHDOG.VHD

TIMRSYNC.VHD

BUC08NNP.VHD

PRESCALE.VHD

INDEXREG.VHD

CLOCKDIV.VHD

INSTRDEC.VHD

MUX08X04.VHD

MUX08X08.VHD

PORTSREG.VHD

PROGCNTR.VHD

ALULOGIC.VHD

TOPLOGIC.VHD

BUC11CPP.VHD

REG11CNN.VHD

MUX11X04.VHD

BINADDER.VHD

AGO3EVAL.VHD

OEMRMINT.VHD

LPFILTER.VHD

MUX11X02.VHD

REGISRAM

BTZ6

NOTES:

(*) SUPPLIED BY AGERE
 ORCA FOUNDARY.

(**) CREATED BY AGERE
 SCUBA(TM) TOOL.

(**)

(*)

ROMSEG0F

(**)

AGERE SPECIFIC FILES COMMON SLC1657 FILES

IBM

IBT

IBTPD

OB6

(*)

(*)

(*)

(*)

ROMSEG01

ROMSEG00

(**)

(**)

.

.

.

.

.

. 16 ROM
SEGMENTS

Technical Reference Manual 172 SLC1657

Appendix A – The Intel HEX Format

Most assemblers and compilers produce data as Intel HEX formatted files. These can
usually be identified by a ‘.hex’, ‘.obj’ or ‘.mcs’ file extension, and contain ASCII text.
Each line (or record) in the file has the attributes shown in Table A-1.

For example, consider the following record in Intel HEX format:

:0300300002337A1E

This record has the following attributes:

Record length: 0x03 (three bytes of data).
Address: 0x0030 (first data byte goes at address 0x0030).
Record type: 0x00 (normal data).
Data: 0x02, 0x33, 0x7A
Checksum: 0x03 + 0x00 + 0x30 + 0x00 + 0x02 + 0x33 + 0x7A = 0xE2
 The 2’s complement of 0xE2 is: 0x100 – 0xE2 = 0x1E.

Also note that the last record of the file is special, and always looks the same. The last
record will always be: ":00000001FF".

Technical Reference Manual 173 SLC1657

Table A-1. Attributes for Each Line In an Intel Hex Formatted File

Character
Number

In Record

Description

1 Colon ':' record marker (ASCII 0x3A).
2-3 Record length. This field contains the number of data bytes in the record, and

is represented by a two-digit hexidecimal number. This is the total number of
data bytes, not including the checksum byte nor the first nine characters of the
record.

4-7 Starting address. This field contains the address where the data should be
loaded. This is a four digit hexidecimal value (i.e. 0x0000 - 0xFFFF).

8-9 Record type. This field indicates the type of record. The possible values are:

0x00 - Data record
0x01 - End of file record.
0x02 - Extended address.
0x03 - Start segment address record.
0x04 - Extended linear address record.
0x05 - Start linear address record.

10-N Data. Data bytes represented by two digit hexidecimal numbers.

Last Two Checksum. The last two characters of the line are a checksum for the record.
The checksum value is calculated by taking the two's complement of the sum
of all the preceding bytes excluding the colon at the beginning of the line, and
the checksum itself. Only the least significant byte of the sum is used in the
calculation.

The two’s complement can be found by subtracting the sum from 0x100. For
example, the two’s complement of 0x03 is: 0x100 – 0x03 = 0xFD.

Technical Reference Manual 174 SLC1657

Appendix B – GNU LESSER GENERAL PUBLIC LICENSE

GNU LESSER GENERAL PUBLIC LICENSE - Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

PREAMBLE

 The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users.

This license, the Lesser General Public License, applies to some specially designated
software packages--typically libraries--of the Free Software Foundation and other authors
who decide to use it. You can use it too, but we suggest you first think carefully about
whether this license or the ordinary General Public License is the better strategy to use in
any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source
code or can get it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must pro-
vide complete object files to the recipients, so that they can relink them with the library
after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Technical Reference Manual 175 SLC1657

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipi-
ents should know that what they have is not the original version, so that the original au-
thor's reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program
by obtaining a restrictive license from a patent holder. Therefore, we insist that any pat-
ent license obtained for a version of the library must be consistent with the full freedom
of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License per-
mits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect
the user's freedom than the ordinary General Public License. It also provides other free
software developers Less of an advantage over competing non-free programs. These dis-
advantages are the reason we use the ordinary General Public License for many libraries.
However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest pos-
sible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-
free programs must be allowed to use the library. A more frequent case is that a free li-
brary does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Pub-
lic License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission
to use the GNU C Library in non-free programs enables many more people to use the
whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Technical Reference Manual 176 SLC1657

Although the Lesser General Public License is Less protective of the users' freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which con-
tains a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called "this Li-
cense"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data)
to form executables.

The "Library", below, refers to any such software library or work which has been distrib-
uted under these terms. A "work based on the Library" means either the Library or any
derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses the
Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

Technical Reference Manual 177 SLC1657

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be

supplied by an application program that uses the facility, other than as an argu-
ment passed when the facility is invoked, then you must make a good faith ef-
fort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose re-
mains meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection
2d requires that any application-supplied function or table used by this function
must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Library, and can be reasonably con-
sidered independent and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or dis-
tribution medium does not bring the other work under the scope of this License.

Technical Reference Manual 178 SLC1657

 3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a pro-
gram that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License. Sec-
tion 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for this
to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and acces-
sors, and small macros and small inline functions (ten lines or less in length), then the use
of the object file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Technical Reference Manual 179 SLC1657

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifica-
tion of the work for the customer's own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an execu-
table linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the ap-
plication to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suit-

able mechanism is one that (1) uses at run time a copy of the library already
present on the user's computer system, rather than copying library functions into
the executable, and (2) will operate properly with a modified version of the li-
brary, if the user installs one, as long as the modified version is interface-
compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give

the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated

place, offer equivalent access to copy the above specified materials from the
same place.

e) Verify that the user has already received a copy of these materials or that you

have already sent this user a copy.

Technical Reference Manual 180 SLC1657

 For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license restrictions of other

proprietary libraries that do not normally accompany the operating system.
Such a contradiction means you cannot use both them and the Library together
in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and dis-
tribute such a combined library, provided that the separate distribution of the work based
on the Library and of the other library facilities is otherwise permitted, and provided that
you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a

work based on the Library, and explaining where to find the accompanying un-
combined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense, link with, or distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties re-
main in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, dis-
tributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipi-
ent automatically receives a license from the original licensor to copy, distribute, link
with or modify the Library subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties with this License.

Technical Reference Manual 181 SLC1657

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent ob-
ligations, then as a consequence you may not distribute the Library at all. For example, if
a patent license would not permit royalty-free redistribution of the Library by all those
who receive copies directly or indirectly through you, then the only way you could sat-
isfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute soft-
ware through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus ex-
cluded. In such case, this License incorporates the limitation as if written in the body of
this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version num-
ber, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distri-
bution conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free

Technical Reference Manual 182 SLC1657

Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LI-
BRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Technical Reference Manual 183 SLC1657

 HOW TO APPLY THESE TERMS TO YOUR NEW LIBRARIES

If you develop a new library, and you want it to be of the greatest possible use to the pub-
lic, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under the
terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full no-
tice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, ifnecessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library for
tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

Technical Reference Manual 184 SLC1657

Appendix C – GNU Free Documentation License

GNU Free Documentation License - Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals pro-
viding the same freedoms that the software does. But this License is not limited to soft-
ware manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this Li-
cense. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to
use that work under the conditions stated herein. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as "you".
You accept the license if you copy, modify or distribute the work in a way requiring per-
mission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

Technical Reference Manual 185 SLC1657

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this Li-
cense. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the be-
ginning of the body of the text.

Technical Reference Manual 186 SLC1657

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

Technical Reference Manual 187 SLC1657

copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network pro-
tocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus li-
censing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives permis-
sion.

B List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

Technical Reference Manual 188 SLC1657

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and publisher of the Docu-
ment as given on its Title Page, then add an item describing the Modified Ver-
sion as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access

to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the "History" section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the origi-
nal publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the

Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be in-

cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict

in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative defini-
tion of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Ver-
sion. Only one passage of Front-Cover Text and one of Back-Cover Text may be added

Technical Reference Manual 189 SLC1657

by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Ver-
sion.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodi-
fied, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or pub-
lisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any sec-
tions Entitled "Acknowledgements", and any sections Entitled "Dedications". You must
delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

Technical Reference Manual 190 SLC1657

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include transla-
tions of some or all Invariant Sections in addition to the original versions of these Invari-
ant Sections. You may include a translation of this License, and all the license notices in
the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full com-
pliance.

10. FUTURE REVISIONS OF THIS LICENSE

Technical Reference Manual 191 SLC1657

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Founda-
tion.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

Technical Reference Manual 192 SLC1657

INDEX

ACCUM register, 16, 19, 29
ACLC software, 131
ADD instruction, 51
ADMO software, 130
ADR router [ADR(6..0)], 87
AEMRMINT entity, 144, 147
AF10EVAL exercise, 133
Agere Systems

AGO3EVAL exercise, 154
evaluation kit, 151
ORCA 3L implementation, 150

AGO3EVAL entity, 169
AGO3EVAL exercise, 154
ALF function generator [ALF(3..0)], 89
Altera

AF10EVAL exercise, 133
evaluation kit, 130
FLEX 10KE implementation, 129

ALULOGIC entity, 19, 37, 79
AND instruction, 51
ANDI instruction, 52
application specific entities, 77
applications, 5
architecture, system, 9
ASGN bit, 32
ASIC implementation, 76
ASIC testability, 12
assemblers / simulators, 27
bank

general purpose registers, 37
instruction, 10, 20
register, 10, 17, 24, 33

banked general purpose registers, 38
battery powered applications, 11, 15, 46
BCLR instruction, 52
bi-directional three-state I/O mode, 30
BINADDER entity, 81
bitwise instructions, 86
BRA instruction, 20, 22, 53, 87
BSET instruction, 53
BSR instruction, 16, 22, 54, 94
BTSC instruction, 54
BTSS instruction, 55
BUC08NNP entity, 82
BUC11CPP entity, 82
C (carry) bit, 37, 99
C compilers, 28
changes from SLC1655, 79
clock

duty cycle, 14
frequency, 11, 46
skew, 69

CLOCKDIV entity, 82

CLR instruction, 55
compilers, 28
core integration, 73
core overview, 9
counter/timer operation, 43
DEC instruction, 56
DECSZ instruction, 56
distribution disk, 72
download software, 10
embedded ROM. See ROM, embedded
emulation ROM. See ROM, emulation
end-of-cycle generator, 90
entity. See entity name
external architecture, 11, 13
FASM

asynchronous ROM, 71, 124
synchronous RAM, 70

features of the SLC1657, 6
FIFO buffers, external I/O, 10
flush instruction pipeline, 20
FPGA implementation, 76
fuzzy logic, 28
general purpose registers, 17, 38
hardware reference, 79
Harvard architecture, 6, 9
HEX file format, 172
I/O ports

back-to-back cycles, 40
driver synthesis, 67, 77
general description, 10
options, 39
reset operation, 30
signals, 39
user specified elements, 12

IB0-1 bits, 35
IEEE standards, 68, 70, 75, 78
immediate instructions, 87
implicit instructions, 84
implicit registers, 16
INC instruction, 57
INCSZ instruction, 57
INDEX register, 25, 33, 37
INDEXREG entity, 83
INDIRECT register, 25, 33
installation, 72
INSTRDEC entity, 83
instruction. See instruction mnemonic
instruction fetch, 19
instruction mnemonic conversion, 49
instruction pipeline, 19, 20
instruction ROM. See ROM
instruction set, 27, 50
integration, 74

Technical Reference Manual 193 SLC1657

Intel HEX file format, 172
internal architecture, 16
internal operation, 18
interrupts, 18
INTRCONV entity, 90
LCLC software, 152
LDMO software, 151
License, source code (LGPL), 174
License, user manual (FDL), 184
LPFILTER entity, 120, 142, 164
Lucent Technologies. See Agere Systems
Manual license (FDL), 184
MCLK signal, 14
Microchip Technology Inc., 9
microcontroller topology, 9
MOV instruction, 58
MOVA instruction, 58, 88
MOVI instruction, 59
MOVP instruction, 30, 59
MOVT instruction, 31, 60
MUX08X04 entity, 91
MUX08X08 entity, 91
MUX11X02 entity, 122, 144, 166
MUX11X04 entity, 91
NC (nibble-carry) bit, 37, 99
NOP instruction, 60
NOT instruction, 61
OEMRMINT entity, 166
op-codes, instruction, 11, 85
OR instruction, 61
ORI instruction, 62
overview, SLC1657, 5
PC0-2 registers, 16, 29, 91
PCLK* signal, 14
PCOUT0-2(7..0) signals, 14
PD (power-down) bit, 36, 44, 46, 62, 97, 99
PDAT* signal, 14
PIC16C57 compatibility, 48
PIC16C57, compatibility with, 9
place-and-route, 77
PLCH* signal, 14
PORT0-2 registers, 38, 91
PORTSREG entity, 40, 91
power-down, 10, 11, 46
power-up state of flip-flops, 70
PRESCALE entity, 92
prescaler, 32

changing, 45
general operation, 11
select bits PS0-2, 32
TCO register, 31

PROG* signal, 15
PROGCNTR entity, 19, 93
PROGCNTR register

general description, 34
preloading, 24
reading, 34

program counter, 22
program memory, 20
PS0-2 (port select) bits, 32
PTIN0-2(7..0) signals, 15

PTOUT0-2 signals, 31
PTOUT02(7..0) signals, 15
PTSTB0-2 signals, 10, 15, 39, 92
PWRDN instruction, 94

current consumption, 46
discrimination after reset, 44
general description, 11, 62
INSTRDEC entity operation, and, 86, 90
program counter operation during, 94
reset operation during, 97

RAM
FASM compatible, 70
general description, 10
required resources on target device, 70
synthesis, 67, 77

reference books
PIC16C57, 28
VHDL, 78

REG08CNN entity, 96, 97
REG08CPN entity, 96
REG12CRN entity, 97
register bank. See bank
register set, 17, 29
reset

general operation, 21, 38
I/O ports, 39
INSTRDEC entity, 90
instruction, 21
power-up state of flip-flops, 70

RESET signal, 15
RESETGEN entity, 97
resources required on target device, 69
RET instruction, 16, 24, 63, 94
RISC microcontroller, 5, 9, 83
ROL instruction, 63
ROM

embedded, 12
emulation, 10, 12, 14, 15, 36, 38, 111, 116, 122,

133, 138, 144, 154, 160, 166
FASM compatible, 71
general operation, 10, 19
speed, 19, 84
synthesis, 67, 77

ROR instruction, 64
RWT instruction, 64
SCUBA, 156
SEL router [SEL(1..0)], 88
SEMRMINT entity, 122, 126
shared general purpose registers, 38
shared registers, 17
signal. See signal name
simulation, 75
skill level, recommended, 7
SLC1655 upgrade, 10, 21, 79, 83, 93, 99
SLEEP signal, 15, 46, 62, 85
SLV2INTPAK, 73, 90
soft core, 5, 67
software tools, 9, 27
Source code license (LGPL), 174
special purpose registers, 17
stack

Technical Reference Manual 194 SLC1657

general operation, 24
registers, 16

STACK1-2 registers, 16
standard instructions, 86
STATSREG entity, 99
STATUS register, 35
SUB instruction, 65
SWPN instruction, 65
synthesis. See VHDL, synthesis
target device resources required, 69
TCO register, 16, 31
TCOPTREG entity, 100
TCS (T/C clock source) bit, 31
test benches. See VHDL, test benches
timer operation, 41
timer/counter

general operation, 10, 26, 41
TCO register, 31

timing specification, 76
TIMRCNTR entity, 101
TIMRCNTR register, 34
TIMRSYNC entity, 102
TMRCLK signal, 16
TMRCNT edge select, 32
TMRCNT signal, 31
TO (timeout) bit, 36, 44, 46, 62, 97, 99
TOPLOGIC entity, 11, 104
TSE (timer select edge) bit, 32
VHDL

entity/architecture pair, 69

hardware description language, 67
portability, 69
pre-synthesis, 75
RAM entity, 70
reference books, 78
simulation tools, 67
source files, 74
standards, 68
synthesis, 67, 77
synthesis tools, 67
test benches, 67, 73
three-state bus usage, 69
variable type usage, 69

watchdog
general operation, 11, 41, 44
timer, 10

WATCHDOG entity, 104
WDT (watchdog enable) bit, 31
work.SLV2INTPAK.all, 73, 90
XCLC software, 109
XDMO software, 108
Xilinx

block memory, 124
evaluation kit, 108
Spartan 2 implementation, 107
XSP2EVAL exercise, 111

XOR instruction, 66
XORI instruction, 66
XSP2EVAL exercise, 111
Z (zero) bit, 37, 99

